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Accurate and consistent segmentation of brain white matter bundles at neonatal stage plays an important role
in understanding brain development and detecting white matter abnormalities for the prediction of psychiatric
disorders. Due to the complexity of white matter anatomy and the spatial resolution of diffusion-weighted MR
imaging, multiple fiber bundles can pass through one voxel. The goal of this study is to assign one or multiple an-
atomical labels of white matter bundles to each voxel to reflect complex white matter anatomy of the neonatal
brain. For this, we develop a supervised multi-label k-nearest neighbor (ML-kNN) classification algorithm in Rie-
mannian diffusion tensor spaces. Our ML-KNN considers diffusion tensors lying on the Log-Euclidean Riemannian
manifold of symmetric positive definite (SPD) matrices and their corresponding vector space as feature space.
The ML-KNN utilizes the maximum a posteriori (MAP) principle to make the prediction of white matter labels
by reasoning with the labeling information derived from the neighbors without assuming any probabilistic dis-
tribution of the features. We show that our approach automatically learns the number of white matter bundles at
a location and provides anatomical annotation of the neonatal white matter. In addition, our approach also pro-
vides the binary mask for individual white matter bundles to facilitate tract-based statistical analysis in clinical
studies. We apply this method to automatically segment 13 white matter bundles of the neonatal brain and
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examine the segmentation accuracy against semi-manual labels derived from tractography.
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Introduction

Diffusion weighted magnetic resonance imaging (DW-MRI) is a
unique in vivo imaging technique that allows us to visualize the three-
dimensional (3D) architecture of neural fiber pathways in the human
brain. Diffusion tensor imaging (DTI) is a simple mathematical model
derived from DW-MRI that characterizes the diffusivity profile of
water molecules in brain tissue via a single oriented 3D Gaussian prob-
ability distribution function (PDF). Detailed labeling of the white matter
based on DTI provides insights for understanding white matter develop-
ment (Huang et al., 2006; Loh et al., 2012; Sadeghi et al., 2013) and de-
tecting white matter abnormalities in disease (Goodlett et al., 2009;
Owen et al., 2013; Wang et al,, 2011). Nevertheless, it is challenging to
obtain anatomical segmentation of the white matter in the neonatal
brain since it is undergoing a critical growing process along with
forms of cellular maturation, such as myelination and synaptic pruning
(Huttenlocher & Dabholkar, 1997; Petanjek et al., 2008). The delineation
of white matter structures in the neonatal brain has thus far mainly

* Corresponding author at: Department of Biomedical Engineering, National University
of Singapore, 9 Engineering Drive 1, Block EA 03-12, Singapore 117576, Singapore.
Fax: + 65 6872 3069.

E-mail address: bieqa@nus.edu.sg (A. Qiu).

http://dx.doi.org/10.1016/j.neuroimage.2014.08.001
1053-8119/© 2014 Elsevier Inc. All rights reserved.

relied on the fully manual segmentation (e.g., manually drawing regions
of interest (Oishi et al., 2011) or semi-manual segmentation with the
aid of DTI tractography techniques (Huang et al., 2006). Both are time
consuming and require prior anatomical knowledge in order to achieve
reasonable reproducibility (Kaur et al., 2014). In addition, Oishi et al.
(2011) developed an atlas-based segmentation based on image regis-
tration to assign one anatomical label to each white matter voxel. To
our best knowledge, no study to date has illustrated automatic segmen-
tation that assigns multiple labels to each voxel in the white matter of
the neonatal brain. The multiple labels per voxel can reflect true under-
lying white matter anatomy as between one and two thirds of the
voxels in the human brain white matter are thought to contain multiple
fiber bundles (Behrens et al., 2007). The proper white matter annotation
is helpful for the interpretation of results derived from voxel-based
analysis on DTI parameters, such as fractional anisotropy (FA), axial
and radial diffusivity.

Although studies on automatic delineation of the neonatal brain
white matter are limited, researchers have spent great efforts on devel-
oping tractography-based segmentation techniques for grouping fiber
tracts into anatomically meaningful white matter bundles based on
DTI data of adult's brain in the last decade (Brun et al., 2004; Clayden
et al,, 2007; Guevara et al., 2011; Jonasson et al., 2005; Li et al., 2010;
Mayer et al.,, 2011; Ratnarajah et al., 2011). In general, tractography-
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based segmentation methods first employ DTI tractography algorithms to
generate fiber tracts, then calculate pairwise distances among fiber tracts,
and finally use clustering algorithms, such as hierarchical clustering
(Guevara et al., 2011) or spectral clustering (Brun et al., 2004; O'Donnell
& Westin, 2007), to group individual tracts into fiber bundles that can po-
tentially characterize anatomically meaningful axonal connections. Even
though tractography-based segmentation approaches are attractive and
provide promising results, they remain nontrivial to automatically cluster
tract trajectories without the involvement of expert anatomical labeling.
In addition, fiber tracking reliability can vary with imaging resolution,
noise, and patient orientation (Wakana et al., 2007). Moreover, the com-
plexity of axonal connections cannot be fully imaged using DW-MRI with
the voxel size at a millimeter scale. Thousands axons connecting different
brain regions can pass through one voxel of DW-MRI. Hence, clustering
algorithm cannot guarantee that tracts are correctly labeled as one of an-
atomically meaningful white matter bundles they belong to.

Recently, DTI has been widely used to study structural connectivity
of the brain (Ratnarajah et al., 2013; Sporns, 2011; Toga et al., 2012)
and hence the white matter can be parcellated based on the cortical re-
gions they connect (Cook et al., 2005; Huang et al., 2005). However, the
actual segmentation of the white matter by this connectivity-based
method is usually not reported, i.e., the fiber trajectories are not gener-
ally visualized (O'Donnell et al., 2013). The tract grouping is highly de-
pendent on the cortical parcellation. Li et al. (2010) recently proposed a
hybrid top-down and bottom-up approach for automatic clustering and
labeling of white matter tracts, which utilizes both brain parcellation re-
sults and similarities between white matter tracts. Again, this hybrid
method faces the aforementioned problems in tractography-based seg-
mentation and connectivity-based white matter segmentation.

Lenglet et al. (2005) represented diffusion tensors in a Riemannian
manifold of multivariate normal distributions and proposed a variational
formulation in the level set framework to estimate the optimal segmen-
tation of the white matter. This work assumed that diffusion tensors ex-
hibit a Gaussian distribution in the different partitions as well as the
interfaces exist among the cerebral structures and are detected by the
gradient of the diffusion tensor image. By using the theoretically well-
founded differential geometrical properties of the Riemannian manifold
of multivariate normal distributions, Lenglet et al. (2005) showed possi-
bility to improve the quality of the segmentation results obtained
with other dissimilarity measures such as the Euclidean distance or the
Kullback-Leibler divergence between tensors. Similarly, Awate et al.
(2007) employed the Riemannian structure of diffusion tensors and pro-
posed a nonparametric modeling approach for segmenting the white
matter. The authors demonstrated the robustness of the segmentation
against imaging artifacts including noise, partial voluming, and inhomo-
geneity. Unfortunately, these two approaches were only validated in spe-
cific white matter bundles, including corpus callosum, corticospinal tract,
and cingulum. Moreover, these two approaches cannot assign multiple
tract labels to one voxel. Only recently, Bazin et al. (2011) described a
Markov random field model to segment the white matter bundles
based on features derived from diffusion tensors, including diffusion
type that is an attribute of the single tract, overlapping tracts, and isotro-
pic region and local tensor connectivity that characterizes the similarity
of two tensor in the neighborhood region. Hence, this approach allows
the presence of maximum of two tract labels at one location for the sim-
plicity of the computation, which partially addresses the complexity of
the white matter anatomy.

In this study, we take the aforementioned advantage of the
Riemannian manifold representation of diffusion tensors and adopt
the multi-label k-nearest neighbor (ML-kNN) algorithm (Zhang &
Zhou, 2007) in Riemannian diffusion tensor spaces for assigning multi-
ple labels to each location of the white matter. Our ML-kNN considers
diffusion tensors lying on the Log-Euclidean Riemannian manifold
of symmetric positive definite (SPD) matrices (Arsigny et al., 2005)
and their corresponding vector space of symmetric matrices as the fea-
ture space of ML-kNN. The ML-kNN utilizes the maximum a posteriori

(MAP) principle to make prediction by reasoning with the labeling in-
formation derived from the neighbors (Zhang & Zhou, 2007) without
assuming any probabilistic distribution of the feature space. Hence,
it is robust against noise as compared to tract-based segmentation
approaches. The ML-KNN has the advantage by merits of both lazy
learning and Bayesian reasoning such as decision boundary can be
adaptively adjusted for each test subject voxel and using prior probabil-
ities for each class label reduces the class-imbalance situation (Zhang &
Zhou, 2007). Unlike the approach in Bazin et al. (2011) with the maxi-
mum of two labels at a location, our approach automatically learns the
number of white matter bundles at a location and provides anatomical
annotation of the neonatal white matter. In addition, our approach
also provides the binary mask for individual white matter bundles to fa-
cilitate tract-based statistical analysis in clinical studies. In our experi-
ment, we apply this method to automatically segment 13 white
matter bundles of the neonatal brain and examine the segmentation ac-
curacy against manual labels.

Methods
Image acquisition and preprocessing

Neonates scanned for this study were part of a larger ongoing birth
cohort study of Growing Up in Singapore Towards Healthy Outcomes
(GUSTO) (Soh et al., 2013). At 5 to 17 days of life, neonates underwent
(i) fast spin-echo T2-weighted MRI (TR = 3500 ms; TE = 110 ms;
FOV = 256 x 256 mm; matrix size = 256 x 256) and (ii) single-shot
echo-planar diffusion weighted (DW) MRI (TR = 7000 ms; TE =
56 ms; flip angle = 90°; FOV = 200 mm x 200 mm; matrix size =
256 x 256). For T2-weighted MR, 50 axial slices with 2 mm thickness
were acquired parallel to the anterior-posterior commissure line. For
DW-MR], 40 to 50 axial slices with 3 mm thickness were acquired par-
allel to the anterior-posterior commissure line. Nineteen diffusion
weighted images (DWIs) with b = 600 s/mm? and 1 baseline with
b = 0 s/mm? were obtained. The images were acquired using a 1.5-
Tesla GE scanner at the Department of Diagnostic and Interventional
Imaging of the KK Women's and Children's Hospital. The scans were ac-
quired when subjects were sleeping in the scanner. No sedation was
used and precautions were taken to reduce exposure to the MRI scanner
noise. A neonatologist was present during each scan.

For each subject, diffusion weighted images were first corrected for
motion and eddy current distortions using affine transformation to
the image without diffusion weighting. To correct geometric distortion
of the DW-MRI due to BO-susceptibility differences over the brain, we
followed the procedure detailed in (Huang et al., 2008). The T2-
weighted image was considered as anatomical reference. Within a sub-
ject, the deformation that carried its DWIs to the T2-weighted image
characterized the geometric distortion of the DW-MRI. For this, intra-
subject registration was first performed using Automated Image Regis-
tration (AIR) (Woods et al., 1993) to remove linear transformation
(rotation and translation) between the diffusion weighted images and
T2-weighted image. Then, the large deformation diffeomorphic metric
mapping (LDDMM) image mapping sought the optimal nonlinear
transformation that deformed the BO image to the T2-weighted image
(Du et al., 2011). Such diffeomorphic transformation was applied to
every diffusion weighted image to correct the nonlinear geometric
distortion. Finally, we employed LDDMM DTI mapping (Cao et al.,
2006) to align the subject's DW data to the atlas that was created based
on the GUSTO sample (Bai et al., 2012). The LDDMM DTI mapping has
been well validated for the deep white matter tracts (Cao et al,, 2006).

Training set construction
Our automated white matter segmentation method introduced in

the subsequent section is built based on the prior information of white
matter tracts obtained from a training set. In this study, the training
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