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Beamforming is a spatial filtering based source reconstruction method for EEG and MEG that allows the estima-
tion of neuronal activity at a particular location within the brain. The computation of the location specific filter
depends solely on an estimate of the data covariance matrix and on the forward model. Increasing the number
of M/EEG sensors, increases the quantity of data required for accurate covariance matrix estimation. Often how-
ever we have a prior hypothesis about the site of, or the signal of interest. Here we show how this prior specifi-
cation, in combination with optimal estimations of data dimensionality, can give enhanced beamformer
performance for relatively short data segments. Specifically we show how temporal (Bayesian Principal Compo-
nent Analysis) and spatial (lead field projection) methods can be combined to produce improvements in source
estimation over and above employing the approaches individually.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

Introduction

Beamforming is an adaptive spatialfilter basedmethod of estimating
electrical activity in the human brain based on signals from an M/EEG
sensor array. Typically per-location summary statistics of electrical
change are used to provide three-dimensional images of brain function.
The spatial filter corresponding to a particular brain region is deter-
mined based on knowledge of the lead field matrix and from an esti-
mate of the data covariance matrix (Van Veen et al., 1997; Gross et al.,
2001; Hillebrand et al., 2005; Brookes et al., 2008). Precise estimation
of both the lead fields and the data covariance is therefore essential
for accurate beamformer solutions.

This paper focuses around the accuracy of covariance matrix esti-
mation which, perhaps counterintuitively, is inversely proportional to
the number of channels (Brookes et al., 2008). The logic being that
one needsmore data tomake an accurate estimate of the covariance be-
tweenmore channels. In fact it can be shown that doubling the number
of M/EEG sensors necessitates that the number of data samples (alter-
natively the time-bandwidth product) is increased four-fold in order
to maintain the same covariance matrix estimation error (see Brookes
et al., 2008 for further details). This can become a problem when one
is interested in relatively short duration or narrow band phenomena
(for example the 0.5–1 sec beta rebound, see Pfurtscheller and Lopes
da Silva, 1999). In this paper we consider the case in which we do not

require whole-brain coverage from the MEG system, but rather have
a specific region of interest inmind. This allows us to decrease the effec-
tive number of channels and thereby to make either more accurate es-
timates or estimates of the same accuracy but with less data.

A well tested channel reduction approach involves projection to
a sub-space designed to optimally represent sources within a region
of interest (ROI) (see Taulu et al., 2004; Ozkurt et al., 2006; Rodríguez-
Rivera et al., 2006 for an overview). Often the ROI may be selected a
priori based on the experimenter's prior knowledge about areas of
task related activity. For example, in Rodríguez-Rivera et al. (2006),
the projection is based on the eigenvectors of the source leadfields
within an anatomical ROI, and the number of orthogonal components
for the projection must be specified by the user. Importantly, this ap-
proach for channel reduction incorporates information from all chan-
nels and has been shown to produce more precise source estimates
than approaches, involving sub-selecting channels based on either
power or location (see Rodríguez-Rivera et al., 2006 for more details).

Given a reduced set of sensors (or linear sensor combinations) there
remains however the question of whether there is sufficient data to
make a reliable covariance matrix estimate. Recent work has shown
how using Bayesian PCA one can make an estimate of the latent dimen-
sionality (effective useful number of channels) (Woolrich et al., 2011).
Projecting the data into this space and hence ending up with a reduced
covariance matrix based on fewer channels is equivalent to optimally
regularizing (or diagonally loading) the full covariance matrix.

In this work we propose a two-step procedure that unifies the ap-
proaches described above. Firstly, an ROI projection is used to reduce
the effective number of channel components a-priori. This step is only
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based on the forward model. Secondly, Bayesian PCA is applied to fur-
ther refine the dimensionality estimate based on covariance of the
ROI-projected data. As both steps have the effect of reducing the effec-
tive number of channels the covariance estimate becomes more robust
for the same amount of data.

We proceed by outlining and demonstrating the use of ROI projec-
tion and bPCA separately. And then go on to show how the combination
of these steps improves the accuracy and resolution of beamforming
estimates.

Methods

Spatial dimensionality reduction (ROI projection)

Details of thismethod can be found in Rodríguez-Rivera et al. (2006).
In what follows howeverwewill provide a brief overview of the general
principles.

We formulate sensor level MEG activity, x, measured at N channels
and T time points as follows:

x ¼
XL

l¼1

H θlð Þm θlð Þ þ q ð1Þ

H(θl) is anN× 3 lead fieldmatrix representing the scaling of the pro-
jection of a unit amplitude dipole at location θl, to N channels, in the x, y
and z directions respectively. Additionallym(θl) represents a 3 × T ma-
trix of time courses in the x, y and z directions (in this paper wewill use
the MNI coordinate system) for a dipole located at θl, where l = 1…L.
Activity is summed over all sources before adding isotropic Gaussian
white noise, q to the sensors.

The goal is to find a transformation, Ur that minimises the error be-
tween the representation of the activity of sources, selected from a
ROI, in the original data and in the projected data. Assuming that Ur

is an N × M matrix with orthonormal columns, where M b N, the
projected data takes the form.

xr ¼ Ur
tx ð2Þ

The N × T matrix x has been transformed to an M × Tmatrix, xr cor-
responding to a reduction in the number of channels from N to M.
Rodríguez-Rivera et al. (2006) show that Ur can be computed from the
singular value decomposition of the following symmetric matrix:

USUt ¼
XR

r¼1

H θrð ÞH θrð Þt : ð3Þ

Accordingly, Ur is set to the M columns of U corresponding to the M
largest eigenvalues of B (the eigenvalues may be determined from the
diagonal of S). This last formulation simply reduces to the approach
for dimensionality reduction used in Friston et al. (2008) (in which
case the ROI was defined by the space of lead fields on the cortical
surface). In addition to dimensionality reduction of the data, a new
leadfield set is computed for each brain location θl (see Eq. (10)). The
above formulation can be appliedwhennoprior information is available
about the dipolemoment, orwhen the dipolemoment is known a priori
e.g. in the case of surface constrained orientations. As an example of this
if we consider a source with known orientation along the x-axis, the
projection matrix Ur would be computed only from the first column of
H(θr).

An important issue with this approach is selecting the dimensional-
ityM. This dimensionality determines the trade-off between the accura-
cy of the representation of the ROI and the spatial resolution of the
resulting projection. In other words, increasingM leads to a more accu-
rate representation of sources in the ROI, but this comes at the cost of
also representing sources outside the ROI. Further insights into this

trade off can be gained by considering the mean squared error of the
linear transformation, which is represented as the sum of the N–M
smallest eigenvalues (given by the diagonal elements in S in Eq. (3)),
normalised by the sum of all eigenvalues.

e Mð Þ2 ¼
XN

M
λiXN

i¼1
λi

ð4Þ

Lower values of this error are obtained by minimising the difference
between N and M and are associated with more accurate representa-
tions of sources in the ROI. A local measure of the ability of the transfor-
mation, Ur to represent sources is gained by considering the ratio of the
projected source and the original source energies at each spatial loca-
tion, which mathematically corresponds to the following.

FM θlð Þ ¼
tr Ur

tH θlð ÞH θlð ÞtUr

� �

tr H θlð ÞH θlð Þt� � ð5Þ

An ideal value for FM(θl) is 1 for sources within the ROI and 0 for
sources outside the ROI. From this it is evident that increasingMwill in-
crease the values of the numerator term for sourceswithin and also out-
side the ROI (see Fig. 1). Additionally it is also evident that this termwill
depend on both the size of the ROI and on the sampling resolution of the
leadfields within the ROI.

Bayesian PCA (bPCA)

The underlying principle of Bayesian PCA is to estimate the true di-
mensionality of the data based on a generativemodel and appropriately
selected priors. Within the context of beamforming, this estimated di-
mensionality is then used to act as a surrogate for finding the optimal
amount of regularisation required to estimate the data covariance
matrix. Expressed more formally, the generative model for bPCA is as
follows:

x ¼ Gvþ q: ð6Þ

Here the temporally demeaned data with dimensions N × T (see
Eq. (2)) is represented by x. G is of dimensions N × P, where P corre-
sponds to the principal component sensor maps. Finally, v is a P × T
matrix of Gaussian latent (or hidden) variables which when multiplied
by the principal component sensor maps with additive zero mean iso-
tropic white noise, q ~ N(0, σ2I), result in the projected data. Woolrich
et al. (2011) use a Variational Bayes (VB) approach (Bishop, 1999)
based on Automatic Relevance Determination (ARD) hyperparameter
thresholding in order to estimate the optimal number of components
P, and hence the dimensionality of the data. An alternative approach
based on Bayesian Model Selection (BMS) (Minka, 2008) has been
shown to be both more accurate and also more computationally effi-
cient, by virtue of avoiding an iterative VB updating routine. This is the
approach we use in the present analysis.

The BMS approach involves computing the evidence for differing
latent dimensionality models (or values of P from Eq. (6)) of the data.
The model with the greatest evidence is then used to infer the true
data dimensionality. In essence, a Gaussian likelihood function of the
data given the PCA parameters is defined. Combining this likelihood
with the required priors gives a complex integral for themodel evidence
that is efficiently and accurately approximated, using either Laplace's
method or the Bayesian Information Criterion (BIC). In practice, the
Laplace approximation tends to be more accurate and is for that reason
used in the present paper. A detailedmathematical description and der-
ivation of theBMSmethod can be found inMinka (2008), and aMATLAB
implementation of the code is provided in the SPM12 distribution (see
spm_pca_order.m).
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