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Functional connectivity analysis of the human brain is an active area in fMRI research. It focuses on identifying
meaningful brain networks that have coherent activity either during a task or in the resting state. These networks
are generally identified either as collections of voxelswhose time series correlate stronglywith a pre-selected re-
gion or voxel, or using data-driven methodologies such as independent component analysis (ICA) that compute
sets ofmaximally spatially independent voxel weightings (component spatialmaps (SMs)), each associatedwith
a single time course (TC). Studies have shown that regardless of theway these networks are defined, the activity
coherence among them has a dynamic nature which is hard to estimate with global coherence analysis such as
correlation or mutual information. Sliding window analyses in which functional network connectivity (FNC) is
estimated separately at each time window is one of the more widely employed approaches to studying the dy-
namic nature of functional network connectivity (dFNC). Observed FNC patterns are summarized and replaced
with a smaller set of prototype connectivity patterns (“states” or “components”), and then a dynamical analysis
is applied to the resulting sequences of prototype states.
In this work we are looking for a small set of connectivity patterns whose weighted contributions to the dynam-
ically changing dFNCs are independent of each other in time.We discuss our motivation for this work and how it
differs fromexisting approaches. Also, in a group analysis based on genderwe show thatmales significantly differ
from females by occupying significantly more combinations of these connectivity patterns over the course of the
scan.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Functional connectivity and dynamic functional connectivity

The functional magnetic resonance imaging (fMRI) research
community is often focused on identification of functionallymeaningful
networks that exhibit coherent activity over time. In seed based
approaches these networks are typically defined as a collection of voxels
whose fMRI time series correlate strongly with the time series of a seed
voxel or seed region (Bressler and Menon, 2010; Bullmore and Sporns,
2009). The identified networks with these approaches are generally re-
ferred to as functional connectivity (FC). In contrast to this, independent
component analysis (ICA) as a data-driven approach identifies

maximally spatially independent configurations of voxel weightings
(referred to as ICA components). Each component is characterized by
a single time course (called the mixing coefficients) (Beckmann et al.,
2005; Calhoun et al., 2001b; Damoiseaux et al., 2006).

Networks (Erhardt et al., 2011a) obtained in these ways have been
shown to track closely with previously identified functional domains.
In the case of ICA, it is also common to evaluate temporal coherence
among network time courses, typically measured by correlation or mu-
tual information, as evidence of functional connectivity among the net-
works, called functional network connectivity (FNC) (Allen et al., 2011;
Jafri et al., 2008).

A key feature of most connectivity analyses (FC or FNC) is that the
temporal coherence is evaluated globally, as a property characterizing
network pairs over the entire duration of a study. More recent work
has indicated however that these patterns of connectivity are highly dy-
namic (Calhoun et al., 2014; Hutchison et al., 2013) with key features
obscured by averaging over whole experiments. To date, investigations
of so-called dynamic FNC (dFNC) have largely been based on computing
correlations over sliding windows through the original time courses
(Allen et al., 2012; Kiviniemi et al., 2011; Rashid et al., 2014; Sakoğlu
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et al., 2010) though other approaches have also been tried (Chang and
Glover, 2010).

Functional network connectivity and dynamic functional network
connectivity for explaining differences between different
demographics groups

Significant evidence (Fox and Greicius, 2010; Jafri et al., 2008;
Kilpatrick et al., 2006; Lynall et al., 2010; Rashid et al., 2014) for differ-
ences in connectivity between different groups of subjects such as
male/female (Kilpatrick et al., 2006) or schizophrenia/healthy controls
(Jafri et al., 2008; Lynall et al., 2010) has emerged from both static and
dynamic connectivity analyses. Schizophrenia patients, for example,
have been found in static FNC to have stronger connectivity between
certain resting state networks than healthy controls (more specifically,
connectivity between relatively less connected networks increases in
the patients) (Jafri et al., 2008). More recently, a dynamic analysis
(Sakoğlu et al., 2010) of task-modulated FNC evaluated on sliding time
course windows concluded that task-modulation of motor–frontal,
RLFP–medial temporal and posterior defaultmode (pDM)–parietal con-
nections was significantly greater in schizophrenia patients, while task
modulation of orbitofrontal–pDM andmedial temporal–frontal connec-
tions was significantly greater in healthy controls. A recent study by
Rashid et al. (2014) observed that schizophrenia and bipolar patients
make fewer transition to certain states and they spend less time in high-
ly intercorrelated stateswhich could only be observed in a brain dynam-
ics study. In another recent study (Damaraju et al., 2014) it has been
shown that dwell times of dynamic connectivity states are significantly
different in schizophrenia patients vs. healthy controls.

Contribution

Sliding-window analyses generally seek to characterize each
subject's connectivity patterns at each time window in terms of a limit-
ed collection of prototype patterns. This can either involve matching
each time-windowed connectivity to one element in a finite set of con-
nectivity patterns obtained by clustering (Allen et al., 2012; Majeed
et al., 2011), or as proposed by Leonardi et al. (2013) connectivity pat-
terns can be decomposed into a linear combination of mutually orthog-
onal PCA components. Both approaches have limitations: Clustering
techniques cannot be easily adjusted to recognize observations that
are linear combinations of certain basic patterns. On the other hand,
mutual spatial orthogonal components estimated by PCA cannot be
interpreted independently, and by design, successive PCA components,
explain smaller and smaller proportions of the variance in the data. Fur-
thermore, the spatial orthogonality assumption of PCA is independent
of temporal behavior of connectivity patterns.

In this paper we introduce the concept of mutually temporally
independent dynamic connectivity patterns. While in conventional
clustering approaches one and only one connectivity pattern (cluster
centroid) is occupied at a time and in PCA-based approaches, compo-
nents do not have a clear temporal dynamic interpretability, in this
paper, we look for patterns of connectivity with mutually independent
temporal behavior. The temporal behavior of these patterns is defined
as a weighted contribution to the observed dFNC at each time point.

Materials and methods

The closest work to the present study is Allen et al. (2012) and our
pipeline is similar up to the computation of sliding-window dFNCs.
However, asmentioned in the Contribution section, we are seeking cor-
relation patterns that make maximally temporally independent addi-
tive weighted contributions to observed dFNCs rather than a set of
summary patterns reflecting cluster means within the observed data.
To support comparisons with earlier work, we used the same data and
followed relevant stages of the preprocessing pipeline from Allen et al.

(2012). In Fig. 1we present the overall procedure for computing tempo-
rally independent connectivity patterns.

Data consisted of 405 healthy participants (200 females) collected
from a 3 T Siemens TIM Trio at the Mind Research Network (TR = 2 s,
TE = 29 ms, flip angle = 75°, voxel size = 3.75 × 3.75 × 4.55 mm)
and were preprocessed through a standard SPM pipeline including
timing and motion correction, spatial normalization, and mild spatial
smoothing (see Allen et al., (2012) and Allen et al. (2011) for more
details on data collection and preprocessing). Data was originally
anonymized, and included a narrow range of ages (mean age: 21.0
and range: 12–35).

Group spatial ICA

Following Calhoun and Adali (2012) and Calhoun et al. (2001a)
group spatial ICA (GICA) was used to find functional networks of the
input data. GICA is implemented in several stages: First, a subject-level
principal component analysis (PCA) reduces the subject data temporal
dimension to 120 principal components (PCs). This is followed by a
group-level PCA on concatenated subject principal components, from
which 100 PCs are retained. A set of maximally spatially independent
group-level spatial maps (SMs) are obtained from this reduced group-
level data using an Infomax-based algorithm. To find the most stable
SMs, Infomax was repeated ten times and clustered via ICASSO
(Himberg and Hyvarinen, 2003). The aggregate spatial maps that
emerge from this process are the modes of component clusters.

After removing components corresponding to movement, imaging
artifacts or components that were contaminated with white matter,
fifty components were left to study.

Subject specific spatial maps and time courses were estimated using
the GICA1 (Allen et al., 2011; Erhardt et al., 2011b) algorithm. Some ad-
ditional postprocessing of time courses were also performed, including
detrending, multiple regression of the size realignment parameters and
their temporal derivatives and outlier removal.

Dynamic FNC estimation

A set of 116 dFNCswas computed for each subject on successive slid-
ingwindows (length=32, step size=1 TR=2 s), tapered by convolv-
ing with a Gaussian of sigma 1 TR. Time courses are cropped with the
size of ourwindow radius (16) at each end. Functional network connec-
tivity in a given window is estimated by calculating a C × C correlation
matrix (where C = # of components). Window length in sliding-
window analyses must be chosen carefully. Short windows can lead to
poor correlation estimates,while longwindows can blur out the tempo-
ral resolution necessary to study dynamics. Through experimentation
we found that a window of length 32 provided a good tradeoff between
temporal resolution and reliability of FNC estimation and regardless
small changes in the window size did not dramatically impact the re-
sults. We further refined the covariance matrix estimates at each time
window by applying a sparsity constraintwith a regularizing parameter
(λ), optimized for each subject, to the precision matrix (the inverse of
the correlation matrix) (Friedman et al., 2008).

Estimation of temporally independent patterns of connectivity

The approach presented in Allen et al. (2012) was focused on iden-
tifying recurring connectivity patterns in subject dFNCs, for which clus-
tering algorithmswould be an obvious choice (i.e. K-means clustering).
However, these patterns need not be temporally independent, and the
centroids produced by clustering simultaneously observed dFNCs di-
minish the odds that these centroids represent patterns that tend to
occur. In this study, however, we want to identify co-occurring patterns
of functional network connectivity whose relative contributions change
independently of one and other in time. To achieve this goal we concat-
enate dFNC matrices along the time dimension and use temporal ICA

86 M. Yaesoubi et al. / NeuroImage 107 (2015) 85–94



Download English Version:

https://daneshyari.com/en/article/6026151

Download Persian Version:

https://daneshyari.com/article/6026151

Daneshyari.com

https://daneshyari.com/en/article/6026151
https://daneshyari.com/article/6026151
https://daneshyari.com

