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ARTICLE INFO ABSTRACT
Article history: Multimodal fusion is becoming more common as it proves to be a powerful approach to identify complementary
Accepted 9 April 2014 information from multimodal datasets. However, simulation of joint information is not straightforward. Pub-

Available online 18 April 2014 lished approaches mostly employ limited, provisional designs that often break the link between the model as-

sumptions and the data for the sake of demonstrating properties of fusion techniques. This work introduces a

ﬁl{m?ﬁi&l new approach to synthetic data generation which allows full-compliance between data and model while still
Simulation representing realistic spatiotemporal features in accordance with the current neuroimaging literature. The
Fusion focus is on the simulation of joint information for the verification of stochastic linear models, particularly those
ICA used in multimodal data fusion of brain imaging data.
Stochastic Our first goal is to obtain a benchmark ground-truth in which estimation errors due to model mismatch are min-
Copula imal or none. Then we move on to assess how estimation is affected by gradually increasing model discrepancies
Multidimensional toward a more realistic dataset. The key aspect of our approach is that it permits complete control over the type
and level of model mismatch, allowing for more educated inferences about the limitations and caveats of select
stochastic linear models. As a result, impartial comparison of models is possible based on their performance in
multiple different scenarios.
Our proposed method uses the commonly overlooked theory of copulas to enable full control of the type and
level of dependence/association between modalities, with no occurrence of spurious multimodal associations.
Moreover, our approach allows for arbitrary single-modality marginal distributions for any fixed choice of depen-
dence/association between multimodal features. Using our simulation framework, we can rigorously challenge
the assumptions of several existing multimodal fusion approaches.
Our study brings a new perspective to the problem of simulating multimodal data that can be used for ground-
truth verification of various stochastic multimodal models available in the literature, and reveals some important
aspects that are not captured or are overlooked by ad hoc simulations that lack a firm statistical motivation.
© 2014 Elsevier Inc. All rights reserved.
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Introduction over time, typically modeling changes and state transitions via differen-

Multimodal data fusion by stochastic linear models of the form
shown in Eq. (1) is becoming increasingly popular in neuroimaging re-
search. Put simply, these models assume separability of each modality's
data X,,, into latent, unobservable stochastic variables S,;, which are lin-
early mixed through an unknown mixing matrix A,,, wherem =1, ...,
M and M is the total number of modalities available. Typically, multi-
modal data consists of a collection of multimodal features pooled from
a number of subjects. These features are often the result of single-
modality first-level (i.e., subject-level) analyses. Thus, most data fusion
approaches are characterized as second-level analyses (i.e., pooled
group analyses). The joint decompositions of the multimodal X;,, can
then be made sensitive to multimodal associations among the mixing
matrices A, (Calhoun et al., 2006a; Correa et al., 2010; Sui et al., 2011)
or among the component variables S,, (Groves et al., 2011; Sui et al.,
2010). Here, we consider that A, is a (N x C) matrix and S,, is a (C x
V) matrix, where N is the number of subjects, C is the number of joint
multimodal components, and Vis the number of data points (e.g., voxels
or timepoints).

X = ApSy,m=1,....M. (1)

Our interest is in the question “How does the performance of a mul-
timodal model change as the properties of A;;, and S,;, become less com-
pliant with the underlying assumptions?” Historically, multimodal
fusion studies have relied on the simulation of artificial datasets to
showcase new models but seldom to address this question. Surely,
well-designed simulations are useful to “debug” new algorithms, and
make comparison and proof-of-concept demonstrations. Nevertheless,
we have only recently observed a greater interest in carefully designed
neuroimaging simulations that could venture after particular limita-
tions and caveats of some popular models (Allen et al., 2012; Erhardt
et al., 2012). Unfortunately, multimodal simulation studies have time
and again neglected the virtues from the field of computerized simula-
tion (Banks, 1998). This is a well-developed area that aims at making ac-
curate predictions about the evolution and behavior of complex systems

tial equations. Evidently, the class of stochastic linear models that we
consider here is not nearly as elaborate. Still, we believe some of the
same principles, especially those related with ground-truth verification
(Oberkampf and Roy, 2010), apply when synthetic multimodal data is
to be generated from these simpler models. We would expect this to im-
prove our ability to rigorously evaluate any limitations of such models
and, thus, better address the question above.

Translating this into practice involves making complete and gradual
assessments of each multimodal model in different scenarios, both
model-inspired and realistic ones. In realistic designs, multimodal asso-
ciations are simulated based on the current literature, using prior
knowledge about how associations are formed in real data. Model-
based designs, on the other hand, simulate associations in agreement
with the chosen model, complying with all its assumptions and limita-
tions. Generally, when real data is well understood, a realistic design
can help select the model that best recovers real data properties, where-
as a model-based design allows ground-truth verification of a model
implementation. Current multimodal simulation approaches are, for
the most part, a blend between these two types of design (see examples
in Appendix A). To our knowledge, however, no multimodal investiga-
tion has attempted to procedurally explore the spectrum of designs
spanned between these extremes. Our premise throughout this work
is that the optimal procedure to study the strengths and limitations of
any model is by starting with a faithful model-based design, and gradu-
ally add discrepancies and violations to specific assumptions toward
more realistic designs. In practice, however, we have observed that de-
signing general multimodal associations in a manner that enables con-
trolled model discrepancies is a great challenge. Lack of control leads
to ad hoc solutions that often are rigid and only reflect the assumptions
of a single stochastic model. We believe that addressing these issues
would considerably increase our ability to recognize the key limitations
of each model, especially in the anticipated cases where real data fails to
comply with the model assumptions.

With that in mind, we introduce a new framework for synthetic data
generation flexible enough to comply with many stochastic linear
models of the form given in Eq. (1) while admitting gradual, controlled
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