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Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple
heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging
data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning
from multiple complementary data sources is advantageous, but feature-pruning and data source selection are
critical to learn interpretablemodels from high-dimensional data. Often, the data collected has block-wisemissing
entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic informa-
tion, but only half have cerebrospinalfluid (CSF)measures, a different half has FDG-PET; only somehaveproteomic
data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when
data is block-wise missing. We present a unified “bi-level” learning model for complete multi-source data, and
extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and
source-level analysis, including several existing feature learning approaches as special cases; (2) the model for in-
complete data avoids imputing missing data and offers superior performance; it generalizes to other applications
with block-wisemissing data sources; (3)wepresent efficient optimization algorithms formodeling complete and
incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least
one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably
with existing approaches.
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Introduction

Alzheimer's Disease (AD), the most common form of dementia, is a
highly prevalent neurodegenerative disease, in which memory and
other cognitive functions decline gradually and progressively over time.
AD accounts for 50–80% of dementia cases and the number of people
affected by AD is expected to increase substantially over the coming
decades (Brookmeyer et al., 2007). Currently there is no known cure for
AD, but the detection and diagnosis of the onset and progression of AD
in its earliest stages is invaluable and is the target of intensive investiga-
tion world-wide.

Recent advances in data collection technologies make it possible to
collect a large amount of data to study and monitor the progression of
AD. Often, these data come from multiple sources, and many studies
involvemulti-modality imaging. For example, different types ofmeasure-
ments based onmagnetic resonance imaging (MRI) of the brain, positron
emission tomography (PET), cerebrospinal fluid (CSF), blood tests, gene/
protein expression data, and genetic data have been collected. These data
are not redundant, and each of them provides complementary informa-
tion for the diagnosis of AD (Calhoun et al., 2009; Fjell et al., 2010;
Landau et al., 2010; Walhovd et al., 2010a). Extraction of the most useful
information from such multi-source (i.e., multi-modality) data is
critical in AD research. Data mining and machine learning methods
have been increasingly used to analyze multi-source data (Calhoun
et al., 2009; Crammer et al., 2008; Fan et al., 2008; Hinrichs et al.,
2011; Troyanskaya et al., 2003; Vemuri et al., 2009; Walhovd et al.,
2010b; Wang et al., 2012; Xu et al., 2007; Ye et al., 2008; Yuan
et al., 2012; Zhang and Shen, 2012; Zhang et al., 2011). It is clear
that both diagnostic and predictive power can be significantly improved
if information fromdifferent sources is properly integrated and leveraged.
Multi-source learning has thus attracted great attention in biomedical re-
search (Calhoun et al., 2009; Huopaniemi et al., 2010; Ye et al., 2008).
Multi-source learning is closely related to an area known as “multi-
view” learning, but the two approaches differ in several important re-
spects. More specifically, multi-view learning mainly focuses on semi-
supervised learning and using unlabeled data tomaximize the agreement
between different views (Ando and Zhang, 2007; Culp et al., 2009). In this
paper,we focus onmulti-source learning in the supervised setting andwe
do not assume there are abundant unlabeled data available. In addition,
we do not attempt to reduce the disagreement betweenmultiple sources
but try to extract complementary information from them, as is often the
case in biomedical applications such as the study of AD.

Inmany applications including the study of AD, someof the available
data also have a very high dimensionality, e.g., neuroimages or gene/
protein expression data. However, this high-dimensional data often con-
tains redundant information, as well as noisy or corrupted entries, and
thus poses a potential challenge. To build a stable and comprehensive
learning model with good generalization, it is common to apply feature
selection –which identifies a small set of themost informative features –
as a pre-processing step for classification or regression. One simple ap-
proach is to pool data from multiple sources together to create a single
data matrix and apply traditional feature selection methods directly to
the pooled data matrix. However, such an approach treats all sources
as equally important, and ignores within-source and between-source
relationships.

Another popular approach is to adopt multiple kernel learning
(MKL) to perform data fusion (Lanckriet et al., 2004; Xu et al., 2007;
Ye et al., 2008). This provides a principled method to perform source-
level analysis, i.e., a particular source is considered relevant to the learning
task only if its corresponding kernel is selected in the MKL approach.
However, MKL only performs source-level analysis, ignoring feature-
level analysis. Such an approach is suboptimal when the individual data
sources are high-dimensional, and an interpretable model is desired. To
fully take advantage of multi-source data, it is desirable to build a model
that performs both individual feature-level and source-level analysis.
In this paper, we will use the term “bi-level analysis”, which was intro-
duced in (Breheny and Huang, 2009), to refer to feature- and source-
level analysis, performed simultaneously.

Besides the multi-modality aspects and the high dimensionality of
the data, a further problem is very commonly encountered: the existence
of (block-wise) missing data is another major challenge encountered in
AD and other biomedical applications. Fig. 1 provides an illustration of
how block-wise missing data arises in AD research. In this example, we
have 245 participants in total and 3 types of measurements (PET, MRI
and CSF) represented in different colors. The blank region means that
data from the corresponding source is missing. In this example, partici-
pants 1–139 have available data for PET and MRI but lack CSF informa-
tion, while participants 149–245 have only MRI data. The block-wise
missing data situation tends to emerge in several scenarios: low-quality
data sources of certain samples may be discarded; some data-collecting
mechanisms (like PET) may be too costly to apply to every participant;
participants may not be willing to allow certain measurements, for vari-
ous reasons (e.g., lack of consent, contraindications, participant attrition,
non-compliance with a long scan). Note that the missing data often
emerges in a block-wise fashion, i.e., for a patient, a certain data source
is either present or missing completely.

Considerable efforts have been made to deal with missing data,
both in the data mining and neuroimaging communities. Some
well-known missing value estimation techniques like EM (Duda
et al., 1997), iterative singular value decomposition (SVD) and matrix
completion (Mazumder et al., 2010) have been extended to biomedical
applications by performing imputation on the missing part of the data.
Although these approaches are effective in handling random missing
entries, they often deliver sub-optimal performance in AD research
(Yuan et al., 2012) for the following reasons: (1) these imputation ap-
proaches fail to capture the pattern of the missing data, i.e., the missing
elements are not randomly scattered across the datamatrix but emerge
block-wise. However, such prior knowledge is completely discarded in
imputation methods; (2) due to the high dimensionality of the data,
these methods often have to estimate a significant amount of missing
values, which can lead to unstable performance.

To overcome the aforementioned drawbacks of standard imputation
methods, we previously proposed an incomplete Multi-Source Feature
learning method (iMSF) which avoids direct imputation (Yuan et al.,
2012). The iMSF method first partitions the patients into disjoint
groups, so that patients from the same group possess identical data
source combinations. Feature learning is then carried out independently
in each group and finally the results from all groups are appropriately
combined to obtain a consistent feature learning result. Such a mecha-
nism enables iMSF to perform feature selection without estimating the
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