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We propose a generic method for the statistical analysis of collections of anatomical shape complexes, namely
sets of surfaces that were previously segmented and labeled in a group of subjects. The method estimates an an-
atomical model, the template complex, that is representative of the population under study. Its shape reflects an-
atomical invariants within the dataset. In addition, the method automatically places control points near themost
variable parts of the template complex. Vectors attached to these points are parameters of deformations of the
ambient 3D space. These deformations warp the template to each subject's complex in a way that preserves
the organization of the anatomical structures. Multivariate statistical analysis is applied to these deformation pa-
rameters to test for group differences. Results of the statistical analysis are then expressed in terms of deforma-
tion patterns of the template complex, and can be visualized and interpreted. The user needs only to specify the
topology of the template complex and the number of control points. The method then automatically estimates
the shape of the template complex, the optimal position of control points and deformation parameters. The pro-
posed approach is completely generic with respect to any type of application and well adapted to efficient use in
clinical studies, in that it does not require point correspondence across surfaces and is robust to mesh imperfec-
tions such as holes, spikes, inconsistent orientation or irregular meshing.
The approach is illustrated with a neuroimaging study of Down syndrome (DS). The results demonstrate that the
complex of deepbrain structures shows a statistically significant shape difference between control andDS subjects.
The deformation-basedmodelingis able to classify subjects with very high specificity and sensitivity, thus showing
important generalization capability even given a low sample size.We show that the results remain significant even
if the number of control points, and hence the dimension of variables in the statistical model, are drastically re-
duced. The analysis may even suggest that parsimonious models have an increased statistical performance.
The method has been implemented in the software Deformetrica, which is publicly available at www.
deformetrica.org.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Non-invasive imagingmethods such asmagnetic resonance imaging
(MRI) enable analysis of anatomical phenotypic variations over large
clinical data collections. For example, MRI is used to reveal and quantify
effects of pathologies on anatomy, such as hippocampal atrophy in
neurodegenerative diseases or change in neuronal connectivity in
neurodevelopmental disorders. Subject-specific digital anatomical

models are built from the segmentation and labeling of structures of in-
terest in images. Inneuroanatomy, these structures of interest are often
volumes whose boundaries take the form of 3D surfaces. For a given in-
dividual, the set of such labeled surfaces, which we call an anatomical
complex, is indicative of the shape of different brain objects and their
relative position. Our goal is to perform statistics on a series of such
anatomical complexes from subjects within a given population. We
assume that the complex contains the same anatomical structures in
each subject, so that interindividual differences are not due to the
presence or absence of a structure or a split of one structure into two.
The quantification of phenotypic variations across individuals or
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populations is crucial to find the anatomical substrate of neurologic dis-
eases, for example to find an early biomarker of disease onset or to cor-
relate phenotypes with functional or genotypic variables. Not only the
quantification, but also the description of the significant anatomical dif-
ferences is important in order to interpret the findings and drive the
search for biological pathways leading to pathologies.

The core problem is the construction of a computational model for
such shape complexes that would allow us to measure differences
between them and to analyze the distribution across a series of com-
plexes. Geometric morphometric methods make use of the relative
position of carefully definedhomologous points on surfaces, called land-
marks (Bookstein, 1991; Dryden and Mardia, 1998). Landmark-free
methods often use geometric characteristics of the surfaces. They there-
fore need tomake strong assumptions about the topology of the surface,
for example limiting analysis to genus zero surfaces (Boyer et al., 2010;
Chung et al., 2003) or using medial representations (Bouix et al., 2005;
Gorczowski et al., 2010; Styner et al., 2005) or Laplace–Beltrami
eigenfunctions (Reuter et al., 2006). Suchmethods can rarely be applied
to raw surface meshes resulting from segmentation algorithms since
such meshes may include small holes, show irregular sampling or split
objects into different parts.

More importantly, such methods analyze the intrinsic shape of each
structure independently, therefore neglecting the fact that brain anato-
my consists of an intricate arrangement of various structures with
strong interrelationships. By contrast, we aim at measuring differences
between shape complexes in a way that can account for both the differ-
ences in shape of the individual components and the relative position of
the components within the complex. This goal cannot be achieved by
concatenating the shape parameters of each component or by finding
correlations between such parameters (Gorczowski et al., 2010; Tsai
et al., 2003), as such approaches do not take into account the fact that
the organization of the shape complex would not change, and in partic-
ular, that different structures must not intersect.

One way to address this problem is to consider surfaces as embed-
ded in 3D space and to measure shape variations induced by deforma-
tions of the underlying 3D space. This idea stems from Grenander's
group theory for modeling objects (Grenander, 1994), which revisits
morphometry by the use of 3D space deformations. The similarity
between shape complexes is then quantified by the “amount” of defor-
mation needed to warp one shape complex to another. Only smooth
and invertible 3D deformations (i.e., diffeomorphisms) are used, so
that the internal organization of the shape complex is preserved during
deformation since neither surface intersection nor shearing may occur.
The approach determines point correspondences over the whole 3D
volume by using the fact that surfaces shouldmatch as a soft constraint.
Themethod is therefore robust to segmentation errors in that exact cor-
respondences among points lying on surfaces are not enforced. In this
context, a diffeomorphism could be seen as a low-passfilter to smooth
shape differences. In this paper, it is our goal to show that the deforma-
tion parameters capture themost relevant parts of the shape variations,
namely the ones that would distinguish between normal and disease.

Here, we propose a method that builds on the implementation
of Grenander's theory in the LDDMM framework (McLachlan and
Marsland, 2007; Miller et al., 2006; Vaillant et al., 2007). The method
has 3 components: (i) estimation of an average model of the shape com-
plex, called the template complex, which is representative of the popula-
tion under study; (ii) estimation of the 3D deformations that map the
template complex to the complex of each subject; and (iii) statistical anal-
ysis of the deformation parameters and their interpretation in terms of
variations of the template complex. The first two steps are estimated si-
multaneously in a combined optimization framework. The resulting tem-
plate complex and set of deformations are now referred to as an atlas.

Previous attempts to estimate template shapes in this framework of-
fered little control over the topology of the template, whether it consists
in the superimposition of a multitude of surface sheets (Glaunès and
Joshi, 2006) or a set of unconnected triangles (Durrleman et al., 2009).

The topology of the template may be chosen as one of a given subject's
complex (Ma et al., 2008), but this topology then inherits the mesh im-
perfections that result from an individual segmentation. In this paper,
we follow the approach initially suggested by Durrleman et al. (2012),
which leaves the choice of the topology of the template with the num-
ber of connected components to the user. Thismethod estimates the op-
timal position of the vertices so that the shape of the template complex
is an average of the subjects' complexes. Here, we extend this approach
in order to guarantee that no self-intersection could occur during the
optimization.

The set of deformations that result fromwarping the template com-
plex to each subject's complex captures the variability across subjects.
The deformation parameters quantify how the subject's anatomy is dif-
ferent from the template, and can be used in a statistical analysis in the
same spirit as in Vaillant et al. (2004) and Pennec (2006).We follow the
approach initiated in Durrleman et al. (2011, 2013), which uses control
points to parameterize deformations. The number of control points is
fixed by the user, and the method automatically adjusts their position
near the most variable parts of the shape complex. The method there-
fore offers control over the dimension of the shape descriptor that is
used in statistics, and thus avoids an unconstrained increase with the
number of surfaces and their samplings (Vaillant and Glaunès, 2005).
We show that statistical performance is not reduced by this finite-
dimensional approximation and that the parameters can robustly detect
subtle anatomical differences in a typical low sample size study. We
postulate that in some scenarios, the statistical performance can even
be increased, as the ratio between the number of subjects and the num-
ber of parameters becomes more favorable.

An important key element of the method is a similarity metric
betweenpairs of surfaces. Such ametric is needed to optimize the defor-
mation parameters that enable the best matching between shape com-
plexes. We use the varifold metric that has been recently introduced in
Charon and Trouvé (accepted for publication). It extends the metric on
currents (Vaillant and Glaunès, 2005) in that it considers the non-
oriented normals of a surface instead of the oriented normals. The
method is therefore robust to possible inconsistent orientation of the
meshes. It also prevents the “canceling effect” of currents, which occurs
if two surface elements with opposite orientation face each other, and
whichmay cause the template surface to fold during optimization. Oth-
erwise, the metric inherits the same properties as currents: it does not
require point-correspondence between surfaces and is robust to mesh
imperfections such as holes, spikes or irregular meshing (Durrleman
et al., 2009; Vaillant and Glaunès, 2005).

This paper is structured as follows to give a self-contained presenta-
tion of themethodology and results. We first focus on the main steps of
the atlas construction, while discussing the technical details of the the-
oretical derivations in the appendices. We then present an application
to neuroimage data of a Down syndrome brain morphology study.
This part focuses on the new statistical analysis of deformations that be-
comes possible with the proposed framework, and it also presents visu-
al representations that may support interpretation and findings in the
context of the driving clinical problem. The analysis also includes an as-
sessment of the robustness of the method in various settings.

Mathematical framework

Kernel formulation of splines

In the spline framework, 3D deformations ϕ are of the form ϕ(x) =
x + v(x), where v(x) is the displacement of any point x in the ambient
3D space, which is assumed to be the sum of radial basis functions K lo-
cated at control point positions ckf gk¼1;…;Ncp

:

v xð Þ ¼
XNcp

k¼1

K x; ckð Þαk: ð1Þ
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