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Electrocorticography (ECoG) in humans yields data with unmatched spatio-temporal resolution that provides
novel insights into cognitive operations. However, the broader application of ECoG has been confounded by dif-
ficulties in accurately depicting individual data and performing statistically valid population-level analyses. To
overcome these limitations, we developedmethods for accurately registering ECoG data to individual cortical to-
pology. We integrated this technique with surface-based co-registration and a mixed-effects multilevel analysis
(MEMA) to control for variable cortical surface anatomy and sparse coverage across patients, aswell as intra- and
inter-subject variability. We applied this surface-based MEMA (SB-MEMA) technique to a face-recognition task
dataset (n = 22). Compared against existing techniques, SB-MEMA yielded results much more consistent with
individual data and with meta-analyses of face-specific activation studies. We anticipate that SB-MEMA will
greatly expand the role of ECoG in studies of human cognition, and will enable the generation of population-
level brain activity maps and accurate multimodal comparisons.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Intracranial EEG (icEEG) recordings are a frequent part of the evalu-
ation of pharmaco-resistant epilepsy at specialized centers. In the
United States, there are about a million patients with epilepsy who are
likely surgical candidates. icEEG is commonly carried out using subdural
grid electrodes (SDEs), yielding summed local neuronal activity around
each electrode — termed electrocorticography (ECoG) (Tandon, 2008).
In order to precisely delineate the epileptogenic network, SDEs are im-
planted over both pathologic and functionally normal cortical tissue.
While abnormal ECoG is used to make clinical decisions regarding the
resection of brain regions, ECoG recordings of local cortical network
processes over uninvolved brain areas in these patients can provide
multi-lobar, high spatio-temporal resolution sampling fromdisseminat-
ed brain regions (Chang et al., 2011; Sahin et al., 2009; Watrous et al.,
2013). These data provide an optimal convergence of coverage and fi-
delity compared to the spatially limited sampling of microelectrodes
(Rutishauser et al., 2011), the poor temporal resolution of fMRI, and

the poor signal qualities of scalp EEG (Jerbi et al., 2009; Lachaux et al.,
2003).

Cognitive operations are reflected precisely by ECoG recordings of
event related broadband activity in the mid-to-high gamma frequency
range (60–200 Hz) (Cervenka et al., 2011; Crone et al., 2001, 2006;
Gaillard et al., 2006; Lachaux et al., 2003; Ojemann et al., 2013). This
gamma-band activity is thought to bind remote regions during cogni-
tive processes (Buzsaki and Draguhn, 2004) such as episodic memory
retrieval (Watrous et al., 2013), semantic decoding and confrontation
naming (Conner et al., 2011, 2013). Gamma-band activity also robustly
correlates with the blood oxygen level dependent (BOLD) signal com-
monly used to provide insight into similar cognitive processes using
functional MRI techniques (Conner et al., 2011; Hermes et al., 2011;
Khursheed et al., 2011; Lachaux et al., 2007; Logothetis and Pfeuffer,
2004; Nir et al., 2007; Ojemann et al., 2010). The comparison of ECoG
with the BOLD signal (Conner et al., 2011; Esposito et al., 2012;
Mukamel et al., 2005) in patients with intracranial electrodes addition-
ally offers an opportunity to elucidate the relationship between hemo-
dynamic and electrophysiological signals, during cognitive processes
that cannot be replicated in animal models (Logothetis et al., 2001).

Despite its remarkable properties, the broader application of ECoG to
cognitive neuroscience has been limited by three significant disadvan-
tages: 1) Concerns that data collected from epileptic subjects may not
reflect normal cognitive function. 2) Electrode coverage in each subject
is variable and sparse (i.e. limited) due to the fact that clinical criteria
dictate electrode placement. 3) The relative scarcity of such data that
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minimizes the potential for broad application to the study of human
cognition (Lachaux et al., 2003).

Concerns about the applicability of these recordings to “normal”
human cognition have been addressed by patient inclusion criteria
based on pre-operative neuropsychological evaluation (e.g. IQ N 80),
the use of non-complex paradigms that optimize the likelihood of re-
sponse parameters overlapping with those seen in healthy volunteers,
and the inclusion of only those ECoG data that are free of electrophysi-
ological abnormalities (Crone et al., 2006; Halgren et al., 1998; Jerbi
et al., 2009; Lachaux et al., 2003).We have previously compared patient
fMRI and ECoG recordings against fMRI obtained in healthy volunteers,
under identical task conditions, further validating the reliability of such
recordings (Conner et al., 2013). This work specifically seeks to address
the sparse sampling problem.

To develop icEEG for the generation of broad-field, high-resolution
brain activitymaps, aswell as to contributemeaningfully tomultimodal
comparisons, the field urgently needs novelmethods for individual data
representation and grouped analyses (Alivisatos et al., 2013; Pieters
et al., 2013). Challenges for individual data representation arise, in
large part, as a result of the convoluted geometry of the brain surface. In-
tracranial electrodes sample discrete patches of cortex related to the
type of electrode used — in the case of SDEs this is the crown of the
gyrus. Existing techniques for mapping ECoG activity onto cortical
models, both volumetric (Conner et al., 2013; Miller et al., 2007) and
surface-based (Dykstra et al., 2012; Esposito et al., 2012), have been
unable to fully address difficulties in the spatial transformation of elec-
trode coordinates and ECoG activity onto the complex folding patterns
of the surface. These include errors introduced during localization of
electrodes situated over sulci, and failures to account for local topology
when utilizing isotropic Euclidean distance measures for spatial
smoothing of ECoG activity. These errors undermine icEEG's high spatial
resolution and confound interpretations through the spatial aliasing of
activity across functionally distinct regions.

A bigger problem arises with respect to inter-subject comparisons.
Individual effect sizes measured by SDEs are robust, but single-subject
recordings cannot capture all cortical regions involved in a particular
task. Due to the discrete nature of the recordings, ECoG activitywill like-
ly underestimate functional representation at the individual level.
Circumventing the sparse sampling problem requires combining data
across large numbers of subjects to achieve widespread coverage. In
this manner, continuousmaps of functional activation can be generated
that provide a more comprehensive view of underlying cortical net-
works (Jerbi et al., 2009). Differences in cortical surface anatomy across
subjects complicate grouped analyses due to poor alignment of func-
tionally homologous brain regions (Anticevic et al., 2008; Dykstra
et al., 2012; Esposito et al., 2012; Oosterhof et al., 2011; Saad and
Reynolds, 2012). Errors of inter-subject co-registration render grouped
ECoG data imprecise, or worse, inaccurate. Recently, however, advances
have introduced the use of surface-based normalization (Fischl et al.,
1999b) with ECoG datasets (Dykstra et al., 2012; Esposito et al., 2012;
Groppe et al., 2013; Mukamel et al., 2014). This approach offers a prac-
tical and computationally efficient method to correct for anatomical
variability across subjects (Anticevic et al., 2008; Fischl et al., 1999b;
Saad and Reynolds, 2012).

At the group-level, the application of traditional statistical models to
neuroimaging datasets has recently been called into question (Chen
et al., 2011; Conner et al., 2013; Woolrich, 2008). Conventional group
analysis strategies operate on the assumption of negligible, or equiva-
lent, intra-subject variance. Additionally, effect-estimates are assumed
to follow Gaussian distributions, without outliers. ECoG data frequently
violate these two assumptions, the consequences of which are exacer-
bated by small sample sizes. Furthermore, conventional grouped-
analysis strategies are not equipped to handle missing data from
subjects with unsampled cortical regions (Chen et al., 2011; Conner
et al., 2013). Given the sparse nature of icEEG, even after combining
data across many subjects, much of the cortex remains unsampled

(Halgren et al., 1998). Failure to correct for large-scale missing data
will distort group effect estimates and inflate statistics (Chen et al.,
2011). Thus the analysis of grouped ECoG data requires amulti-level ap-
proach that is capable of incorporating individual subject effect sizes
and their variances, correcting for missing data, and modeling outliers
(Chen et al., 2011; Woolrich, 2008). Such comprehensive statistical ap-
proaches have been largely lacking in icEEG literature (Burke et al.,
2013; Davidesco et al., 2013; Esposito et al., 2012; Groppe et al., 2013;
Khursheed et al., 2011; Kojima et al., 2013; Miller et al., 2007; Vidal
et al., 2010; Watrous et al., 2013).

To overcome these limitations, we have developed a pipeline for the
topologically accurate and statistically robust surface-based analysis of
individual and population-level ECoG data. We developed novel
methods to accurately represent recording electrode coverage sites
and to depict high frequency ECoG activity on cortical surface models.
We integrated thesemethodswith surface-based co-registration to cor-
rect for variability in cortical anatomy across subjects, and have adopted
a mixed-effects multilevel grouped analytic approach (n = 22) to con-
trol for sparse sampling and outlier inferences, as well as intra- and
inter-subject variability.

We extend prior work in this field in three ways: 1) the spatial trans-
formation of individual SDE coverage to their cortical surface model in-
corporates the full diameter of each electrode. This preserves the true
spatial resolution of the recording electrode, and avoids errors that
occur when localizing SDEs situated over sulci with existing coordinate-
to-nearest node approaches (Conner et al., 2013; Dalal et al., 2008;
Dykstra et al., 2012; Esposito et al., 2012; Hermes et al., 2010). 2) The in-
corporation of local gyral and sulcal folding patterns during the spatial
transformation of subject SDE coverage to the surface. By modeling un-
derlying cortical geometry at each electrode, this approach prevents erro-
neous assignment of activity to neighboring cortical regions, which may
be closely situated in Euclidean space but are in fact functionally distinct
structures (e.g. opposing banks of a sulcus) (Anticevic et al., 2008; Fischl
et al., 1999b; Weiner and Grill-Spector, 2013). 3) The adaptation of a
mixed-effects multilevel analysis (MEMA) approach that avoids assump-
tions of equivalent or negligible intra-subject variability, corrects for
missing data, and is capable of modeling outliers. Compared to conven-
tional statistical models, the MEMA approach yields increased statistical
power, more accurate grouped effect-estimates, and is better equipped
to handle ECoG data (Chen et al., 2011; Conner et al., 2013).We validated
our pipeline using data collected during a famous face-naming task and
comparing our results against currentmethods of individual and grouped
ECoG analysis.

Methods

22 patients (13 female, mean age 35 ± 11 years, mean IQ 99.5 ±
8.5), scheduled for SDE implantation (14 LH, 5 RH, 3 bilateral), were en-
rolledwith informed consent. A total of 2518 (1799 LH, 719RH) individ-
ual subdural electrodes were implanted (PMT Corporation; 4.5 mm
diameter, 3 mm diameter contact with cortex) using standard neuro-
surgical techniques (Tandon, 2008). Of these, we excluded 391 (286
LH, 105 RH) due to proximity to sites of seizure onset, inter-ictal spikes,
or 60 Hz noise; the remaining 2199 SDEs were analyzed.

Cortical surface models and electrode localization

Cortical surface models were reconstructed from subject pre-
implantation anatomical MRI scans (Phillips Medical; T1-weighted, 1
mm isotropic resolution) using FreeSurfer software (v5.1) (Dale et al.,
1999), and then imported to the SUMA module of AFNI (Cox, 1996).
SDEs were localized using intra-operative photographs combined with
a recursive grid partitioning technique, and spheroids were generated
to model the SDE location on the cortical surface model (Pieters et al.,
2013).
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