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Structural and functional connectomes are emerging as important instruments in the study of normal brain
function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-
network studies that presently dominate the (non-connectome) network literature, connectome analyses
typically examine groups of empirical networks and then compare these against standard (stochastic) net-
work models. The current practice in connectome studies is to employ stochastic network models derived
from social science and engineering contexts as the basis for the comparison. However, these are not nec-
essarily best suited for the analysis of connectomes, which often contain groups of very closely related net-
works, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies
important extensions of standard stochastic models that make them better adapted for analysis of
connectomes, and develops new statistical fitting methodologies that account for inter-subject variations.
The extensions explicitly incorporate geometric information about a network based on distances and
inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and uti-
lize a stochastic choice of network density levels (for fixed threshold networks) to better capture the vari-
ance in average connectivity among subjects. The new statistical tools introduced here allow one to
compare groups of networks by matching both their average characteristics and the variations among
them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geomet-
ric and degree considerations alone.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The study of the empirical brain networks has taken great strides
in recent years, allowing analysis of the brain “system”with its com-
plex interconnections. The construction of the brain networks, or
connectomes, from clinical MR data is becoming commonly available
and is providing both deep insights into the functioning of the
human brain and also into the differences between normal and
abnormal (diseased or injured) brains (Bullmore and Sporns, 2009;
Sporns, 2011).

The foundations of these approaches have been largely based on tech-
niques developed in the social sciences and engineering, in particular for
networks of people or computer networks (Albert et al., 1999; Jackson,
2010; Watts, 2004), as well as applications in biological and biochemical
networks (Jeong et al., 2001). In these settings one typically has only a

single, very large network (or several related but fundamentally different
networks) to analyze, which has led to the development of very powerful
approaches in those settings (Newman, 2003).

However, the study of groups of brain networks requires different
tools. Here, one often has groups of closely related networks wherein
although the exact edges may differ from subject to subject, none-
theless the number and basic attributes of nodes remain comparable
between subjects. This comparability of nodes between different
networks allows for a variety of new types of analyses andmodels, in-
cluding the construction of detailed geometric properties of the network.

This consideration also allows one to view a group of networks from
a distributional sense — for example, one can ask what is the distribu-
tion of networks for a population of subjects of a certain type, such as
controls or those with a specific disorder or injury. In many instances,
understanding the entire distribution is in fact crucial, as simple aver-
ages may sometimes conceal critical information (as noted but not for-
malized in Simpson et al., 2012). For instance, a recent paper analyzing
structural connectomes in subjectswith agenesis of the corpus callosum
(AgCC) revealed that a key difference between the AgCC subjects and
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the controls was that the AgCC patients exhibited higher inter-subject
variability in their networks (Owen et al., 2012).

In order to understand these distributions of networks, an under-
lying stochastic network model is commonly assumed in brain net-
work studies. The choice of underlying model figures implicitly in
the design of network measures. For example, computations of mod-
ularity and the clustering of nodes in a connectome typically employ
a definition of “modularity” that is inherently based on the assump-
tion of an underlying Degree-Distributed stochastic network, since it
“weights” edges based on the degree of the nodes that it connects
(e.g. If two nodes are both of high degree then an edge between
them is not as “informative” as an edge between two low-degree
nodes, which is in some sense less likely to arise by chance (Girvan
and Newman, 2002)). The choice of underlying model also figures
prominently in computing the significance of a network measure.
For example, the “smallworldness” of a network is often compared
to the smallworldness of a matched random network (Sporns and
Zwi, 2004). The choice of such a comparison network can prove to
be crucial. For example, for resting state fMRI networks, the
smallworldness of the two most popular random network models –
the Erdos–Renyi model and the Degree Distributed random model –
typically differ by a factor of 2 on empirical brain networks (Newman
et al. 2001,Newman, 2009a). Alternatives include choosing the average
or median consensus network or a single representative one (Simpson
et al., 2011). As well discussed in Simpson et al. (2012) there are
many more examples exposing the importance of the underlying
model network, ranging from their use as null networks as discussed
above, to modularity analyses (Joyce et al., 2010; Meunier et al.,
2009a,b; Valencia et al., 2009), to representing an individual's network
based on several experimental runs (Zuo et al., 2011), to visualization
tools (Song et al., 2009; Zuo et al., 2011), to their ability to assess a
group of networks (Achard et al., 2006), to identifying hub/node types
(Joyce et al., 2010), and to constructing representative networks for
brain dynamics studies (Jirsa et al., 2010). Additional examples formod-
ularity include Expert et al. (2011), Bassett et al. (2013) and Henderson
and Robinson (2013).

The goal of modeling a group of networks, as in this paper, does
affect our choices for analysis. The goal is to have a stochastic
model that generates networks that “fits the entire group of net-
works” and is constructed to match basic network properties, such
as degree distribution or geometry. This is in contrast to random net-
work models that try to fit network measures, such as implemented
by Vértes et al. (2012) or Simpson et al. (2011) which consider clas-
ses of random networks and then fit them to the empirical measures
—while these can provide deep insights into the structure of the em-
pirical networks, they do not provide simple intuitive models for
comparison.

To see this point more clearly, consider the work by Vértes et al.
(2012) which considers similar stochastic network models to those
in this paper. While there are important differences in the models
such as the use of preferential attachment terms in their models
and inter/intra-hemispheric terms in ours, the differences in imple-
mentation are more significant. They choose important parameters
in their models (such as those for the distance and preferential at-
tachment terms) by maximizing an energy function that tries to
match themean of the subjects' global network measures (efficiency,
clustering andmodularity) to those of the stochastic networks. (Note
that their models use the variability in networkmeasures to scale the
energy function but do not match the variability of these measures,
as we do below.) This generates a network that fits the means of
the data closely, but because of the complex nonlinear interactions
between the parameters and the network measures can lead to net-
works with different parameters than would have been attained by
directly fitting to the baseline network information. For example,
the distribution of edge lengths in their models often differ signifi-
cantly from the empirical distribution as seen clearly in their figures.

To see why this arises, consider a simple stochastic network
model in which the probability of an edge between two nodes is
given by a function of the distance between those two nodes. Clearly
one could find a distance function that differs significantly from the
true one that yields the same specified clustering coefficient. Similar-
ly, one could likely fit the random networks to exactly match the
small-worldness of the empirical networks, but then one cannot dis-
cuss the excess small-worldness (as we do later in this paper). In ad-
dition, standard random network modeling, such as that typically
used for degree distributions (wherein each empirical network is in-
dividually matched to one or several random networks with the
exact same degree distribution) differs significantly from our
approach as this is in some sense over-fitting and only generates net-
works that have the exact degree distribution of one of the empirical
networks (Newman et al. 2001, Newman, 2009a), while one would
expect that a new subject would not exactly match the degree distri-
bution of one of the existing networks. (One could see this statistical-
ly using standard cross-validation techniques, such as the well
known leave-one-out cross-validation.)

Another key difference between connectomes and most traditional
network models is that nodes in connectomes have a physical location.
This is extremely important as connections between different areas of
the brain definitively dependupon relative location, particularly the dis-
tance between various regions (Kaiser and Hilgetag, 2004a,b; Scannell
et al., 1999; Sporns et al., 2004). As we will show, the use of such geo-
metric information appears to be important in the development of
good generative models, as was suggested by Expert et al. (2011), ap-
plied in Vértes et al. (2012) and motivated by the analysis in
Alexander-Bloch et al. (2013). Fig. 1 (which will be explained more
fully later), previews the various stochastic networkmodels (both tradi-
tional ones and newer ones incorporating geometric information) that
will be considered and compared in this paper.

An additional important aspect in the study of connectomes is the
choice of threshold type and value, as both fMRI and dMRI generate
continuous valued matrices that are then thresholded to create a bi-
nary matrix representing the network, where the network density is
determined by the threshold value which can be chosen for fixed
density (every network has exactly the same density) or variable
density (every network uses the same threshold). While we do not
directly analyze the optimal choice of threshold type and value (if
there indeed is one; see vanWijk et al., 2010), we do consider the ef-
fects of such a threshold on the distribution of generated networks.
Note that, as discussed in van Wijk et al. (2010), while fixed thresh-
old networks may be superior in certain settings to fixed density net-
works, they are also more difficult to analyze due to the effects of the
density variations on network measures; however we believe that
the use of appropriate null networks can mitigate these difficulties.
We also note that recent work has also considered using weights di-
rectly in the network analysis and not thresholding the data (e.g., Liu
et al., 2013; Rubinov and Sporns, 2010). Alternatively, one can treat
“multiple thresholds simultaneously” (Bassett et al., 2013; Ginestet
et al., 2011).

One important but unrecognized consequence of applying a fixed
threshold to all the empirical networks in the group is that it leads to
wide variations in their densities, which, as we show later, well exceed
those appearing in standard stochastic network models. Accordingly,
we will demonstrate that in order to effectively capture the variability
found in real connectome studies, one needs to allow density to vary
in the underlying stochastic network models (see Fig. 2).

In this paper, we take a principled empirical approach towards
these issues. We compare a variety of stochastic network models
on both functional and structural brain networks to understand
which of the standard network metrics are well captured and
which are not and how to design models that better capture these
properties of connectome data. In addition, we extend some traditional
statistical methods so as to quantify and illuminate the variation in
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