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Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs)
from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous
Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient
analytical solutions, and 2) Discrete Representation based SD (DR-SD), where the signal profile is represented by
a discrete set of basis functions uniformly oriented on the unit sphere. A feasible fODF should be non-negative
and should integrate to unity throughout the unit sphere S2. However, to our knowledge, most existing SH-based
SD methods enforce non-negativity only on discretized points and not the whole continuum of S2. Maximum
Entropy SD (MESD) andCartesian Tensor FiberOrientationDistributions (CT-FOD) are the only SDmethods that en-
sure non-negativity throughout the unit sphere. They are however computational intensive and are susceptible to
errors caused by numerical spherical integration. Existing SDmethods are also known to overestimate the number
of fiber directions, especially in regions with low anisotropy. DR-SD introduces additional error in peak detection
owing to the angular discretization of the unit sphere. This paper proposes a SD framework, called Non-Negative
SD (NNSD), to overcome all the limitations above. NNSD is significantly less susceptible to the false-positive
peaks, uses SH representation for efficient analytical spherical deconvolution, and allows accurate peak detection
throughout the whole unit sphere. We further show that NNSD and most existing SD methods can be extended
to work on multi-shell data by introducing a three-dimensional fiber response function. We evaluated NNSD in
comparison with Constrained SD (CSD), a quadratic programming variant of CSD, MESD, and an L1-norm regular-
ized non-negative least-squares DR-SD. Experiments on synthetic and real single-/multi-shell data indicate that
NNSD improves estimation performance in terms of mean difference of angles, peak detection consistency, and an-
isotropy contrast between isotropic and anisotropic regions.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Diffusion MRI (dMRI) non-invasively reveals the microstructure of
white matter by capturing the diffusion patterns of water molecules.
The most widely used dMRI approach, Diffusion Tensor Imaging (DTI),
captures one fiber direction per voxel and is incapable of describing
complex diffusion processes due to its Gaussian diffusion assumption
(Johansen-Berg and Behrens, 2009). In view of this, many High Angular
Resolution Diffusion Imaging (HARDI) (Tuch et al., 2002)methods have
been developed in recent years to characterize non-Gaussian diffusion
and compute quantities such as the Ensemble Average Propagator
(EAP) (Wedeen et al., 2005; Descoteaux et al., 2010; Cheng et al.,

2010b; Özarslan et al., 2009; Cheng et al., 2012), diffusion Orientation
Distribution Function (dODF) (Tuch, 2004; Hess et al., 2006;
Descoteaux et al., 2007; Aganj et al., 2010; Cheng et al., 2010a; Cheng
et al., 2012), and fiber Orientation Distribution Function (fODF)
(Tournier et al., 2004; Tournier et al., 2007; Alexander, 2005; Jian and
Vemuri, 2007; Dell'Acqua et al., 2007; Dell'Acqua et al., 2010;
Landman et al., 2012; Weldeselassie et al., 2012).

Spherical deconvolution (SD) has been shown to be effective for es-
timating the fODF by assuming that the measured diffusion-weighted
signal can be obtained via spherically convolving a latent fODF with a
fiber response function estimated from voxels known to be traversed
by a single fascicle (Tournier et al., 2004, 2007; Jian and Vemuri, 2007;
Johansen-Berg and Behrens, 2009). The fODF can hence be recovered
via an inverse problem by deconvolving the signal with the estimated
fiber response function. The local peaks (maxima) of the fODF give the
corresponding fiber directions. SD methods can be classified into two
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categories, 1) Continuous Representation based SD (CR-SD), which is
normally based on the Spherical Harmonic (SH) basis (Tournier et al.,
2004, 2007; Anderson, 2005) and 2) Discrete Representation based SD
(DR-SD), which is based on a discrete mixture of rotated versions of
the fiber response function (Jian and Vemuri, 2007; Dell'Acqua et al.,
2007, 2010; Landman et al., 2012).

Existing SDmethods in both continuous and discrete representation
categories share some common limitations. First, they often result in
false-positive fiber directions (Tournier et al., 2004, 2007; Alexander,
2005; Johansen-Berg and Behrens, 2009; Jian and Vemuri, 2007;
Landman et al., 2012; Weldeselassie et al., 2012), especially in low-
anisotropy gray matter and cerebrospinal fluid (CSF) regions. Second,
they normally fall short in ensuring that the estimated fODF is a proper
probability density function, because non-negativity and unit integral
throughout the unit sphere are not explicitly enforced. Most SD
methods, including the popular Constrained SD (CSD) (Tournier et al.,
2007) and all DR-SD methods (Jian and Vemuri, 2007; Dell'Acqua
et al., 2007; Dell'Acqua et al., 2010; Landman et al., 2012), consider
non-negativity only on discretized points but not the whole continuum
of the unit sphere S2. To the best of our knowledge, Maximum Entropy
SD (MESD) (Alexander, 2005) and Cartesian Tensor Fiber Orientation
Distributions (CT-FOD) (Weldeselassie et al., 2010; Weldeselassie
et al., 2012) are the only existing methods that ensure non-negativity
throughout S2. However, they are computationally inefficient and rely
on the error-prone process of numerical spherical integration. Ad-hoc
normalization is also employed in these methods to obtain fODFs with
unit integral. Some methods estimate continuously non-negative
dODFs (Schwab et al., 2012; Cheng et al., 2012; Krajsek and Scharr,
2012) and EAPs (Cheng et al., 2012) using eigenvalue distribution of
spherical functions and square root representation. But to our knowl-
edge, noneof thesemethods has been proposed to estimate continuous-
ly non-negative fODF in a SD framework. Third, for estimation of the
fODF with reasonable accuracy, DR-SD methods (Jian and Vemuri,
2007; Dell'Acqua et al., 2007, 2010; Landman et al., 2012) require a sig-
nificant amount of rotated fiber response functions along directions that
are distributed densely on the unit sphere, significantly increasing the
dimensionality and the time cost of the optimization problem. Further-
more, since for DR-SD methods (Jian and Vemuri, 2007; Dell'Acqua
et al., 2007, 2010; Landman et al., 2012) the local peaks (maxima) of
the fODF are detected fromdiscretized points on the unit sphere, the an-
gular resolution is limited.

To our knowledge, existing SD methods deal only with single-shell
data (i.e., single b-value) and do not consider the radial component of
diffusion. With advances in dMRI, multi-shell data are increasingly
available (e.g., Human Connectome Project (HCP) (Sotiropoulos et al.,
2013)). For example, the HCP Q1 data come with three b-values (b =
1000/2000/3000 s/mm2). Recent estimation methods such as the
ball-stick model (Jbabdi et al., 2012), Q-Ball Imaging (Aganj et al.,
2010), and other multi-shell HARDI methods (Assemlal et al., 2011;
Cheng et al., 2010a, 2010b; Descoteaux et al., 2010; Özarslan et al.,
2009) demonstrated that ODF, EAP as well as fiber directions can be es-
timated with greater accuracy from multi-shell data compared with
single-shell data. However, there is currently no existing work on how
to perform SD on multi-shell data.

In this paper, we propose a method called Non-Negative Spherical
Deconvolution (NNSD) to estimate fODF from both single- and multi-
shell data.

The main contributions of this paper are summarized as follows:

• NNSD is the first SH-based SD method to guarantee non-negativity
throughout S2, not only on discretized points on the unit sphere, as in
CSD (Tournier et al., 2007). In NNSD, non-negativity is achieved by
representing the square root of the fODF as a linear combination of SH
basis functions. Compared with non-SH methods like MESD and
CT-FOD, which also guarantee non-negativity on the whole S2, NNSD
is significantly faster due to the use of closed-form expression for

spherical convolution. Compared with CSD which suppresses
negative values in discrete samples using iteratively re-weighted
regularization, the non-negativity constraint in NNSD is built into its
fODF representation andhenceNNSDworkswell evenwithout any reg-
ularization.

• In addition to the non-negativity constraint, NNSD reduces spurious
peaks by implementing Riemannian gradient descent with an adaptive
stopping condition. As a result, the anisotropy values of the fODFs
estimated by NNSD in gray and white matter regions exhibit a large
contrast. Existing SD methods result in many false-positive peaks and
hence high anisotropy in regions that are less anisotropic.

• Compared with traditional single-shell methods, we show that multi-
shell data can be used for fODF estimation with greater robustness.

• Performance evaluation using real data is difficult due to the lack of
ground truth. We propose in this paper a measure called peak consis-
tency (PC) for quantitative fODF evaluation without exact knowledge
of the ground truth.

Part of thiswork has been reported in our conferencepaper (Cheng et al.,
2013a, 2013b). Herein, we provide additional examples, results, deriva-
tions, and insights that are not part of this conference publication.

The rest of the paper is organized as follows. SD theory and algorithms
are reviewed in Section Theory. Section Spherical deconvolution revisited
provides an overview of existing SD methods using single-/multi-shell
data, i.e. CSD (Tournier et al., 2007), a variant of CSD based on quadratic
programming, MESD (Alexander, 2005), and DR-SD via L1 regularized
non-negative least-squares fitting (L1-NNLS) (Jian and Vemuri, 2007;
Landman et al., 2012). Section Non-Negative Spherical Deconvolution
(NNSD) describes NNSD and the associated Riemannian gradient descent
algorithm. Two stopping strategies for Riemannian gradient descent are
discussed. Section Methods furnishes evaluation details, including fiber
response function estimation (Section Estimation of fiber response
function), peak detection (Section Peak detection), synthetic data gener-
ation (Section Synthetic data simulation and evaluation), and peak con-
sistency evaluation (Section Real data evaluation via peak consistency).
In Section Experiments, NNSD is evaluated in comparison with the
methods discussed in Section Spherical deconvolution revisited.
Section Discussion provides additional discussions on various aspects of
NNSD. Section Conclusion concludes this paper.

Theory

Spherical deconvolution revisited

In this section, we describe CSD, MESD, and L1-NNLS, which were
originally proposed for single-shell data, and generalize them for
multiple-shell data. We also proposed a new implementation of CSD
using quadratic programming.

Constrained SD (CSD)
SD (Tournier et al., 2004; Anderson, 2005)methods assume that the

measured signal in each voxel is the product of convolving a latent fODF
with an axisymmetric fiber response function. For u ∈ S2, the fODF is
represented as

Φ uð Þ ¼
XL
l¼0

Xl
m¼−l

f lmY
m
l uð Þ; ð1Þ

and the axisymmetric 3D fiber response function along the z-axis is
represented as

H quj 0;0;1ð Þð Þ ¼
XL
l¼0

hl qð ÞY0
l uð Þ; ð2Þ
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