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The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network
topology. However, studies on brain networks have reported contradictory findings, and do not easily converge
to a clear concept of the structural and functional network organization of the brain. It has recently been sug-
gested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST
is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous
work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for un-
weighted networks), whichmay occur concomitantly with alterations in network topology under empirical con-
ditions. If analysis ofMSTs avoids thesemethodological limitations, understanding the relationship betweenMST
characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here,
we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We
then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-
free networks that were gradually rewired to random networks. Surprisingly, although most connections are
discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network
topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction
were very strongly related to changes in the characteristic path lengthwhen the network changed from a regular
to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the
degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable
for the comparison of brain networks, as it avoidsmethodological biases. Even though theMST does not utilize all
the connections in the network, it still provides a, mathematically defined and unbiased, sub-networkwith char-
acteristics that can provide similar information about network topology as conventional graph measures.

© 2014 Elsevier Inc. All rights reserved.

Introduction

General introduction

Brain functioning requires both specialization and global integration
of information (Tononi et al., 1998). The brain is organized as a complex
network, and neural functioning can only be fully understood when ac-
tivity is studied in the context of this network (Bullmore and Sporns,
2009; Stam and van Straaten, 2012; Park and Friston 2013). Major
graph theoretical advances have provided elegant tools for systems
neuroscience (Rubinov and Sporns, 2010). Graph theorymakes it possi-
ble to fully characterize structural and functional brain networks, which

provides insights in fundamental properties of the structural and dy-
namical organization of neural communication (Bullmore and Sporns,
2009, 2012).

Early studies used the small-world and scale-free model to describe
structural and functional networks (Sporns and Zwi 2004; Bullmore and
Sporns, 2009). A small-world topology efficiently combines local
specialization and global integration (Watts and Strogatz, 1998). A
scale-free topology is characterized by a power lawdegree2 distribution
with an important role for hub nodes (Barabasi and Albert, 1999).
Human structural and functional networks have both small-world and
scale-free characteristics that have often been correlated to optimal cog-
nitive functioning (Bullmore and Sporns, 2012; van den Heuvel et al.,
2009). Importantly, a deviation from this optimal topology has been
linked to cognitive and clinical symptoms in neuropsychiatric diseases
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(Stam and van Straaten, 2012; Stam, 2014). In recent years, other aspects
of complex brain networks have also attracted attention, such as modu-
larity, hierarchy, and mixing properties such as degree correlations and
the ‘rich-club’ of strongly interconnected hub nodes (Bullmore and
Sporns, 2009, 2012; van den Heuvel et al., 2012).

Problem definition

Although findings obtainedwith conventional graphmetrics such as
the clustering coefficient, shortest path length and degree distribution
(see Network characteristics) have increased our understanding of the
complexity of the brain's architecture, methodological issues have
limited comparability between experimental conditions, cohorts and
studies. Brain network studies are typically based on neuroimaging
data (such as functional MRI (fMRI), similarity in cortical structure or
Diffusion Tensor Imaging) or neurophysiological recordings (such as
electroencephalography (EEG), magnetoencephalography (MEG), or
corticography) (Bullmore and Sporns, 2012). Especially for this type of
empirical data, the underlying network topology is often topic of inter-
est and a priori unknown. A connectivitymatrix containing information
on all possible structural or functional connections can be converted
into a network, which can then be analyzed with graph theoretical ap-
proaches. For this purpose, connections can be either unweighted (i.e.
they either exist or do not exist) or weighted (i.e. they have a weight
that characterizes its strength). Both the comparison of unweighted
and weighted networks based on neuroimaging data is accompanied
by methodological hurdles. For thorough studies on this topic we refer
to Fornito et al. (2013) and van Wijk et al. (2010). Here we will briefly
discuss this topic.

Let us first consider unweighted networks, where the problem is to
decide whether a connection is present or absent; this decision involves
arbitrary choices that influence the network properties of interest. To
construct unweighted networks one has to apply a threshold on the
connectivity values of the originalweighted network of interest. This re-
sults in scaling of the network properties as a function of the threshold
(Fornito et al., 2010).Moreover, the threshold can be chosen in a variety
of ways, for example based on an arbitrary choice, or using statistical
criteria of connectivity strength, based on the average degree, or based
on the density of the network. The main problem with choosing a
threshold based on connectivity strength is that a difference in the dis-
tribution of connectivity values in two connectivity matrices may result
in two unweighted networks having different densities. Subsequently,
these differences in densities affect the estimated network characteris-
tics even when the actual underlying network topology is the same.
This problem cannot be solved by simply using different threshold
values for each network (van Wijk et al., 2010). When the threshold is
based on a fixed average degree or average density, the number of con-
nections in the network is fixed. However, this may result in either in-
clusion of spurious or noisy connections in networks (for too high
density values or too high average degree) or the exclusion of relevant
connection in networks (for too low density values or too low average
degree) (van Wijk et al., 2010).

The analysis of weighted networks is similarly accompanied by
methodological problems, despite the fact that it does not suffer from
threshold problems. Graph measures on these networks are influenced
by average connection strength, the range of connectivity values and by
the noisy and spurious connections contained in these weighted
networks.

Proposed normalization procedures to correct for these biases in
both unweighted andweighted network analyses do not provide an ad-
equate solution (vanWijk et al., 2010). Normalization typically involves
comparison of estimated network characteristics to those for a refer-
ence network with the same density, and sometimes also the same de-
gree distribution. This normalization step may reduce the bias but does
not solve it completely. Furthermore, the choice for a specific random
network as surrogate data is arbitrary as one could use a random

network obtained by reshuffling the original link weights, either with
orwithout preserving the degree distribution, or byusing the configura-
tion model (Maslov and Sneppen, 2002; Newman et al., 2001). There-
fore, analyses of both unweighted and weighted networks involve
arbitrary choices that in itself affect the network properties. This may
partly explain why studies on network alterations in brain diseases de-
scribe contradictory findings for specific patient populations, as has
been reported for Alzheimer's disease and epilepsy (Diessen et al.,
2013; Tijms et al., 2013).

The minimum spanning tree

Analysis of the minimum spanning tree (MST) may be helpful as it
avoids methodological biases when comparing networks. The MST is
mathematically defined as the sub-network that connects all nodes
while minimizing the link weights and without forming loops
(Kruskal, 1956; Prim, 1957). The linkweights in neuroimaging data typ-
ically represent the connectivity strength (which can be considered as
an inverse distance; an MST based on connectivity strength formally is
amaximum spanning tree). Two assumptions underlying theMST anal-
ysis are that all nodes in the original weighted network are connected,
and that all linkweights are unique. Theoretically, theMST is insensitive
to scaling effects since its topology only depends on the ordering of the
weights in the original network and not on the absolute values or the
distribution of these weights (Jackson and Read, 2010). Furthermore,
every transformation of the weights which preserves weight ordering
does not affect the MST (Dobrin and Duxbury, 2001). Apart from
being insensitive to scaling effects, theMSTmay also efficiently capture
the essential properties of complex networks, as found for many fields
of science. The MST has been used as dimension reduction method in
genetic linkage maps, as a method to partition highways and roads in
transport networks, or as way to find the state with the lowest energy
or disorder in physical systems (Dussert et al., 1986; Jackson and
Read, 2010; King and Tidor, 2009; Wu et al., 2006, 2008).

MST analysis was first applied to brain networks by Lee et al. (2006),
and has been used in several recent studies on development and neuro-
psychiatric diseases (Boersma et al., 2012; Demuru et al., 2013; Olde
Dubbelink et al., 2014; Ortega et al., 2008; Tewarie et al., 2013a; van
Dellen et al., 2014; Stam et al., 2014). However, it is unclear how the
MST relates to conventional measures of network organization such as
clustering and path length. Furthermore, it has been stated that the MST
is biologically unlikely to be a realistic representation of brain networks
because the MST, in contrast to real brain networks, contains no loops
(Meunier et al., 2009). Here, we use simulations to demonstrate 1) how
analysis of the MST overcomes scaling effects; and 2) how topological
changes of the MST relate to topological changes of the original graph
in terms of the measures that describe its small-worldness and scale-
freeness. Indeed, we show that several MST characteristics are very
strongly related to the conventional graph theoretical measures, such as
the path length and node degree. Finally, we discuss how these insights
can be used to interpret data from empirical MST studies.

Simulations

Network characteristics

Formal definitions and explanations of all network characteristics
used in this paper are given in Table 1. Empirical networks often display
non-random organization, characterized by local specialization (i.e.
local clusters of connections) and global integration (through relatively
sparse long range connections). This local specialization is usually quan-
tified by computing the clustering coefficient C, which is the fraction of
triangles in the network (Rubinov and Sporns, 2010). The average
shortest path length L is often considered as a measure for global inte-
gration and is defined as the average number of links in the shortest
path between any two nodes, subsequently just referred to as path
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