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Functional brain networks reconfigure spontaneously during rest. Such network dynamics can be studied by
dynamic functional connectivity (dynFC); i.e., sliding-window correlations between regional brain activity. Key
parameters—such as window length and cut-off frequencies for filtering—are not yet systematically studied. In
this letter we provide the fundamental theory from signal processing to address these parameter choices
when estimating and interpreting dynFC. We guide the reader through several illustrative cases, both simple
analytical models and experimental fMRI BOLD data. First, we show how spurious fluctuations in dynFC can
arise due to the estimation method when the window length is shorter than the largest wavelength present in
both signals, even for deterministic signals with a fixed relationship. Second, we study how real fluctuations of
dynFC can be explained using a frequency-based view, which is particularly instructive for signals with multiple
frequency components such as fMRI BOLD, demonstrating that fluctuations in sliding-window correlation
emerge by interaction between frequency components similar to the phenomenon of beat frequencies. We
conclude with practical guidelines for the choice and impact of the window length.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Functional magnetic resonance imaging (fMRI) has become a key
tool to probe the large-scale organization of the brain. Functional
connectivity (FC), which is estimated by correlation of BOLD activity,
identifies coherent brain activity in distributed and reproducible net-
works. FC has revealed reorganization of brain networks during cogni-
tive tasks (Ekman et al., 2012; Lewis et al., 2009; Richiardi et al., 2011,
2013; Shirer et al., 2012), but also at rest (Allen et al., 2014; Chang
and Glover, 2010; Hutchison et al., 2013b; Kang et al., 2011; Leonardi
et al., 2013; Majeed et al., 2011; Smith et al., 2012). To study changes
in FC over time sliding-window correlation analysis, where the correla-
tion is estimated for brain activity duringmultiple, possibly overlapping
temporal segments (typically 30–60 s), has been widely deployed
(Allen et al., 2014; Chang and Glover, 2010; Hutchison et al., 2013a;
Sakoglu et al., 2010). A caveat of analyzing dynamic FC (dynFC) by
sliding-window correlation is that the small number of time points ren-
ders the estimates unreliable and might lead to spurious variability of
dynFC (Hutchison et al., 2013a; Smith et al., 2012). However, there is
no systematic account that perspicuously indicates the trade-off that is
made by choosing the window length, and its implications for filtering
of BOLD activity time series and dynFC itself.

We first break sliding-window correlation into several components
to facilitate its study. Then,wepresent a simple yet instructive analytical
model to study the emergence of spurious variability of dynFC in
stationary signals. In particular, we investigate the influence of various
parameters such as frequency, phase lag, and window length. Next,
we introduce a small change to our analytical model to study how real
variability of dynFC due to non-stationarity might arise. To provide the
best possible insights for signals with many frequency components,
we present a frequency-based view on dynFC. This provides an elegant
explanation of how fluctuations of dynFC emerge through the interac-
tion between different frequency components. Finally, we illustrate
dynFC between two main regions of the default-mode network with
experimental fMRI data.

Breaking down sliding-window correlations

We start by reformulating sliding-window correlation into simpler
terms. In particular, we first look at sliding-window covariance, which
for two time series x and ywith sampling period TR is defined as follows
at scan n:

cxy n½ � ¼ cov x n−Δ;nþ Δ�; y½n−Δ;nþ Δ½ �ð Þ

¼ TR
w

XnþΔ

i¼n−Δ

xi−xnð Þ yi−ynð Þ; ð1Þ
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where w = (2Δ + 1)TR is the odd window length in seconds, i sums
only over the scans inside the window, and

xn ¼ TR
w

XnþΔ

i¼n−Δ

xi

is the local average inside the window at position n. This calculation is
then repeated for all values of n (“sliding" the window across time).
After some elementary manipulations, we arrive at the following
equality:

cxy n½ � ¼ TR
w

XnþΔ

i¼n−Δ

xi−xnð Þ yi−ynð Þ

¼ TR
w

XnþΔ

i¼n−Δ

xi yi−ynð Þ−TR
x
w

XnþΔ

i¼n−Δ

yi−ynð Þ¼að ÞTR
w

XnþΔ

i¼n−Δ

xi yi−ynð Þ

¼ TR
w

XnþΔ

i¼n−Δ

xiyi−yn
TR
w

XnþΔ

i¼n−Δ

xi ¼
TR
w

XnþΔ

i¼n−Δ

xiyi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
I

−ynxn|ffl{zffl}
II

;

ð2Þ

where (a) simplifies as the second term equals zero. Thus, cxy[n] can
be separated into two terms, which are the local average of the
cross-product xy (I) minus the product of the local averages of x
and y (II).

The sliding-window correlation is then obtained by normalizing at
each window by the local variances:

ρxy n½ � ¼ cxy n½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cxx n½ �cyy n½ �

q : ð3Þ

Having identified the components that constitute sliding-window
correlation, we can now analyze and understand dynFC more easily.

Spurious fluctuations in dynFC

Effect of the window length

We want to understand how spurious fluctuations of dynFC might
arise even for deterministic signals with a fixed relationship; i.e., we
consider two pure sinusoidal signals that are phase-locked. Specifically,
we take

xi ¼
ffiffiffi
2

p
cos 2π f i TRð Þ; yi ¼

ffiffiffi
2

p
cos 2π f i TR þ θð Þ; ð4Þ

where the factor
ffiffiffi
2

p
normalizes both signals for variance equal to one

per time unit. This normalizationmakes the sliding-window covariance
comparable to sliding-window correlation as a first approximation;
i.e., we have the asymptotic equivalence limw → ∞ρxy[n] = cxy[n].

To investigate the influence of the key parameters frequency f,
phase lag θ, and window length w, we derive the analytical form
of cxy[n] for the signals of Eq. (4). First, we approximate yn by
integration as follows:

yn ¼ TR
w

XnþΔ

i¼n−Δ

ffiffiffi
2

p
cos 2π f i TR þ θð Þ≈

ffiffiffi
2

p

w

Z nþΔð ÞTR

n−Δð ÞTR
cos 2π f t þ θð Þdt

¼
ffiffiffi
2

p

w
1

2π f
sin 2π f t þ θð Þ

� � nþΔð ÞTR

n−Δð ÞTR
¼

ffiffiffi
2

p

w2π f
sin 2π f nþ Δð ÞTR þ θðð Þ

− sin 2π f n−Δð ÞTR þ θÞð Þ ¼
ffiffiffi
2

p

wπ f
cos 2π f nTR þ θð Þsin 2π fΔTRð Þ:

On similar grounds, we also find xn ¼
ffiffi
2

p
wπ f cos 2π f nTRð Þsin 2π fΔTRð Þ.

Therefore, the second term xnyn of Eq. (2) reverts to

xnyn ¼ 2
w2π2 f 2

cos 2π f nTRð Þcos 2π f nTR þ θð Þsin2 2π fΔTRð Þ:

To estimate the first term of Eq. (2), we use the product-to-sum
trigonometric identity

2cos 2π f iTRð Þcos 2π f iTR þ θð Þ ¼ cos 4π f iTR þ θð Þ þ cos θð Þ;

which, after integration, leads to

cos θð Þ þ 1
wπ f

cos 2π f nTR þ θð Þsin 2π fΔTRð Þ:

By combining both terms, we retrieve the expression

cxy n½ � ¼ cos θð Þ þ 1
wπ f

cos 2π f nTR þ θð Þsin 2π fΔTRð Þ

− 2
w2π2 f 2

cos 2π f nTRð Þcos 2π f nTR þ θð Þsin2 2π fΔTRð Þ:
ð5Þ

As a sanity check, we see that in the limit of stationary covariance
(i.e., infinite window length), we have

lim
w→þ∞

cxy n½ � ¼ cos θð Þ:

We now use this expression to efficiently trace cxy[n] as function of
frequency f, phase lag θ, window length w, and window position n. In
Fig. 1a, cxy[n] is plotted for f= 0.025 Hz and zero phase lag, as a function
of window length w. The dashed lines are for different window
positions n, and the thick line corresponds to the mean cxy ¼ E cxy n½ �� �

.
We observe considerable fluctuations of cxy[n] for short window
lengths, and crossings with the true value (i.e., 1) exactly for multiples
of the window length because the term sin(2πfΔTR) in Eq. (5) vanishes
for 2ΔTR = 1/f. Importantly, only when the window length is larger
than the first crossing, which corresponds to the wavelength 1/f = 40
s, fluctuations of cxy[n] diminish and converge to the true value of cos(θ).

The same observations can be made from Figs. 1b and c, where we
plot cxy for various frequencies, and the difference between maximal
and minimal cxy[n] in Fig. 1d. Spurious fluctuations of cxy[n] occur
when the window length is too short with respect to the underlying
frequency component. We propose the following rule of thumb for
minimal window length when observing underlying frequencies of
fmin or higher:

w≥ 1
fmin:

Therefore, high-pass filtering that removes frequency components
below 1/w can be recommended; see also Smith et al. (2012) and
Hutchison et al. (2013a) for similar recommendations. The cut-off
frequency fmin is indicated in Fig. 1. It should be noted that these plots
only depend on the window length in seconds, not in TRs.

Sliding-window correlation ρxy[n] (and its fluctuations) can be
obtained by normalizing cxy[n] according to Eq. (3). In the ideal case
with zero phase lag, sliding-window correlation clamps to 1; however,
even a small phase lag is sufficient to introduce the same spurious
fluctuations as we observed for sliding-window covariance. In Fig. 2,
we plot sliding-window correlation and its extrema for phase lags of
θ = π/16 and θ = π/4, respectively. The variability of sliding-window
correlation is decreased compared to sliding-window covariance, but
still the true correlation of cos(θ) is recovered only for window lengths
above wmin, in accordance with the previous rule of thumb.
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