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Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior
frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cin-
gulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in
response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic
causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the
strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity
dynamics was accrued across a very large space of possible network structures. Cognitive control and working
memory demands were manipulated using a factorial combination of the multi-source interference task and a
verbal 2-back workingmemory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual
information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/
dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-
induced negative influence of the dlPFC on the pSMA/dACCwas specific to working memory demands. These re-
sults reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal net-
work. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared
across cognitive domains, while dynamic updating of task and context representations within this network are
potentially specific to changing demands on cognitive control.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Cognitive control (CC) and working memory (WM) rely on neural
processing within a common set of brain regions encompassing
dorsomedial prefrontal, lateral prefrontal, and superior parietal regions
of the human cortex (Fedorenko et al., 2013; Harding et al., in press;
Niendam et al., 2012). This so-called “frontoparietal network” (FPN)
represents a flexible, superordinate system supporting adaptive behav-
ioral control across a broad range of cognitive demands (Cocchi et al.,
2013; Cole et al., 2013; Dosenbach et al., 2008). The inherent flexibility
of this system has been linked to rapid adjustments in neuronal re-
sponse profiles as a function of changing behavioral goals or contextual
cues (Kadohisa et al., 2013; Stokes et al., 2013). However, the neural
mechanisms underlying such dynamic representation of unique behav-
ioral goals and encoding of diverse contextual information remain
unclear.

Functional neuroimaging research has established that activity in
the regions forming the FPN demonstrate temporal coherence
(i.e., functional connectivity) in human subjects at rest (Cole and
Schneider, 2007; Power et al., 2011). The magnitude of these intrinsic
inter-regional interactions has additionally been shown to selectively
change in response to behavioral demands, as demonstratedmost clear-
ly in studies exploring the dynamic interplay between the dorsomedial
and dorsolateral prefrontal cortices during cognitive control tasks
(Carter and van Veen, 2007; Prado et al., 2011; Stephan et al., 2003).

More recently, research has moved beyond the study of FPN
connectivity usingpair-wise correlations in brain signals, employing tech-
niques that are sensitive to network-wide and directional interdepen-
dencies (i.e., effective connectivity; Friston, 2011). Dynamic causal
modeling (DCM) provides one means to infer neural interactions and
their task-dependent changes within a brain network (Friston et al.,
2003). In contrast to alternative effective connectivity modeling ap-
proaches (e.g., Structural Equation Modeling), DCM models dynamics at
the level of neuronal populations, as opposed to the measured hemody-
namics, providing greater construct validity to derivedmodels of network
function (Daunizeau et al., 2011).Moreover, DCMdoes not depend on the
temporal precedence of one regional time series relative to another (as in
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multivariate autoregressive models); reliance on temporal lag may be
problematic to inference using fMRI data (Friston et al., 2013).

Studies employing DCM to explore the FPN have identified sparse
task-related connectivity dynamics on top of a foundation ofwidespread
task-invariant “baseline” interactions, largely mirroring correlation-
based work (Cieslik et al., 2011; Fan et al., 2008; Schlosser et al., 2008;
Wang et al., 2010). In particular, Schlosser et al. (2010) report modula-
tions of medial–lateral prefrontal interactions during performance of a
Stroop task, while WM load has been associated with the transient gat-
ing of, primarily, fronto-parietal connectivity (Deserno et al., 2012; Dima
et al., 2014;Ma et al., 2012; Schmidt et al., 2014). Thesefindings point to
a well-integrated network whose interactions are selectively weighted
in response to current behavioral demands, reflecting a potential mech-
anism of adaptive codingwithin the FPN (Duncan, 2001). However, dis-
similar experimental protocols and definitions of the FPN across
available investigations preclude amore unified account of the response
of this network across different cognitive domains.

Here we utilize DCM to investigate task-related changes in the FPN
as CC and WM demands are systematically co-varied within a single
fMRI task. Task-related dynamics of the interactions between the visual
system and the FPN arefirst explored to assess the shared versus unique
mechanisms underlying the selective engagement of higher-order cog-
nitive processes. Context-dependent plasticity between the major re-
gions of the FPN as a function of CC or WM demands is then assessed
to distinguish their relative contributions to underlying connectivity
dynamics.

Materials & methods

Participants

Twenty-five right-handed healthy adults (14 males; mean age ±
s.d. = 25.5 ± 4.4 years) with no history of psychiatric or neurologic ill-
ness were recruited from the general community through advertise-
ments in local electronic media. Exclusion criteria included a history
of psychiatric or neurologic illness, substance dependence, significant
head injury, current use of psychotropic medications, or MRI incompat-
ibility (e.g., cardiac pace-maker), as assessed using the Structured
Clinical Interview for DSM-IV Axis-I Disorders (First et al., 2002) and
self-report. Participants had completed an average of 14.8 ± 2.2 years
of education and had a mean estimated full-scale IQ of 110 ± 10
(Wechsler Abbreviated Scale of Intelligence; Wechsler, 1999). This par-
ticipant sample is the same as that reported in Harding et al. (in press).
The local research and ethics committee approved study conduct and all
participants provided written informed consent.

Behavioral paradigm

CC and WM demands were respectively manipulated using the
multi-source interference task (MSIT; Bush and Shin, 2006) and a verbal
n-back working memory task (n = 0, 1, or 2; Baddeley, 2003), com-
bined in a 2 × 3 factorial design. This design allowed for orthogonal ma-
nipulation of CC and WM demands within a common task context. As
illustrated in Fig. 1, and described in full detail elsewhere (Harding
et al., in press), participants were presented with sets of three numbers
ranging in value from ‘0’ to ‘3’, with one number distinct to the other
two (e.g., ‘2 1 1’), and instructed to identify the distinct number by but-
ton press (‘1’ = index; ‘2’ = middle; ‘3’ = ring fingers). CC demands
were manipulated by altering the composition of the number-sets:
“congruent” trials featured the distinct number paired with zeros,
which do not represent a response alternative, and spatially aligned
with the corresponding response finger; conversely, “incongruent” tri-
als featured both ‘Flanker’ interference introduced by distracter num-
bers (Eriksen and Eriksen, 1974) and ‘Simon’ conflict based on spatial
incongruence between the target digit and the corresponding response
finger (Simon and Berbaum, 1990). Working memory demands were

introduced by requiring participants to withhold a response if the cur-
rent ‘distinct’ numberwas the same as that presented ‘n’ trials previous-
ly (where n represents the working memory load: 1 or 2). Two trials in
which this condition was met were included in each working memory
block.

The six conditionswere presented in alternating blocks containing 8,
9, or 10 stimuli for 0-Back, 1-Back, and 2-Back blocks, respectively. The
first stimulus in 1-Back blocks, and first two in 2-Back blocks were
discarded during analysis to account for ‘ramping-up’ of WM load.
Each stimulus was presented for 2 s and separated by variable inter-
stimulus intervals of between 3.6 s and 7.2 s. Four blocks of each condi-
tion were presented across the experiment, each preceded by an
instruction screen indicating the n of the subsequent block.

fMRI data acquisition

Images were obtained on a 3-Tesla Siemens Trio scanner equipped
with a 32-channel head coil. Each functional run consisted of 354
whole-brain gradient-echo echo-planar (GRE-EPI) images composed
of 36 interleaved, contiguous axial slices (TR = 2400 ms; TE = 32 ms;
flip angle = 90°; slice thickness = 3 mm; in-plane resolution
(matrix) = 3.3 × 3.3 mm (64 × 64); FOV = 210 × 210 mm). A high-
resolution T1-weighted MPRAGE structural image was also acquired
(176 sagittal slices; 0.9 mm isotropic voxels; TR = 1900 ms; TE =
2.24 ms; FOV = 230 × 230 mm; matrix = 256 × 256).

fMRI data analysis

Analysis was performed using SPM8 software (Functional Imaging
Laboratory, UCL, UK). Structural (T1-weighted) images from each indi-
vidual were first coregistered to the functional data and normalized to
standard space (DARTEL; Ashburner, 2007). The estimated nonlinear
transformation parameters were subsequently applied to the (rigid-
body) motion-corrected functional data. The normalized data were in-
terpolated to 2 mm isotropic voxels and spatially smoothed using a
Gaussian kernel of 8 mm FWHM.

For each individual, the six task conditions were coded as individual
predictors in a general linear model, alongside nuisance regressors ac-
counting for error trials, instruction periods, and working memory
ramping effects (i.e., first trial in 1-back blocks and first two trials in 2-
back blocks). Each stimulus event was coded as a delta (i.e., stick) func-
tion and convolved with a canonical hemodynamic response function.
Data were high-pass filtered (1/128 s), and temporal autocorrelations
were estimated using a first-order autoregression model [AR(1)]. Pa-
rameters corresponding to each predictor were estimated using a re-
stricted maximum likelihood approach. Contrast images were created
among the six conditions of interest to infer the main positive effects
of CC andWM (voxel-level family-wise error corrected p b0.05) within
a repeated-measures ANOVA framework.

Dynamic causal modeling

Deterministic, bilinear dynamic causal models (Friston et al., 2003)
were used to assess large-scale neural interdependencies within the
FPN using differential state equations comprised of three sets/matrices
of parameters: A, context-invariant intrinsic influences between
regions; B, context-dependent modulations of the intrinsic connections
as a function of CC and WM demands; and C, exogenous visual inputs.
Models of neuronal dynamics were combined with a hemodynamic
model that describes the relationship between the (hidden) neuronal
activity of the system and the measured fMRI signal (Friston et al.,
2000). The parameters of the integrated model were estimated using
a Bayesian inversion algorithm (Friston et al., 2003), as implemented
in the DCM10 toolbox (Functional Imaging Laboratory, UCL, UK).

We tested a broad variety of models (see below). Estimates of the
posterior evidence of these models were derived during Bayesian
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