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In the absence of cognitive tasks and external stimuli, strong rhythmic fluctuations with a frequency ≈10 Hz
emerge from posterior regions of human neocortex. These posterior α-oscillations can be recorded throughout
the visual cortex and are particularly strong in the calcarine sulcus, where the primary visual cortex is located.
The mechanisms and anatomical pathways through which local \alpha-oscillations are coordinated however,
are not fully understood. In this study, we used a combination ofmagnetoencephalography (MEG), diffusion ten-
sor imaging (DTI), and biophysical modeling to assess the role of white-matter pathways in coordinating cortical
α-oscillations. Our findings suggest that primary visual cortex plays a special role in coordinatingα-oscillations in
higher-order visual regions. Specifically, the amplitudes ofα-sources throughout visual cortex could be explained
by propagation of α-oscillations from primary visual cortex through white-matter pathways. In particular,
α-amplitudes within visual cortex correlated with both the anatomical and functional connection strengths to
primary visual cortex. These findings reinforce the notion of posterior α-oscillations as intrinsic oscillations of
the visual system. We speculate that they might reflect a default-mode of the visual system during which
higher-order visual regions are rhythmically primed for expected visual stimuli by α-oscillations in primary
visual cortex.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The most salient feature of electrical activity in human neocortex in
the absence of explicit cognitive tasks is strong ≈10 Hz oscillations
(Berger, 1875; Hari and Salmelin, 1997). These posterior α-oscillations
are typically recorded over occipital and posterior-parietal regions and
are particularly strong within and around the calcarine fissure—where
the primary visual cortex (V1) is located—as well as in the occipito-
parietal fissure (Hari and Salmelin, 1997; Ciulla et al., 1999). Although
initially regarded as functionally irrelevant, evidence is now accumulat-
ing that posterior α-oscillations do not merely reflect passive idling of
visual areas but correlate with allocation of visuo-spatial attention
(Yamagishi et al., 2005; Jensen et al., 2010; Capilla et al., 2012). For ex-
ample, during anticipatory cue-stimulus intervals, α decreases in those
regions of V1 that correspond to attended locations in the visual field
and increases in unattended or distractor regions (Kelly et al., 2006;
Rihs et al., 2007). Moreover, these modulations do not only pertain to
spatial attention tasks but extend to feature-based attentional processes

in higher-order visual areas including the dorsal and ventral projection
systems (Jokisch and Jensen, 2007; Snyder and Foxe, 2010). Thus,
power fluctuations in posterior α-oscillations seem to reflect modula-
tions in cortical excitability, constituting a fundamental mechanism for
flexible routing of visual attention (Jensen et al., 2002; Romei et al.,
2008; Spaak et al., 2012). Research on the neuronal mechanisms under-
lying attention-driven α-modulation is expected to benefit from a char-
acterization of the resting-state organization of posterior α-oscillations.

Magnetoencephalographic (MEG) recordings in human subjects and
local field potential (LFP) recordings in dogs andmacaques have shown
that posterior α-oscillations can be recorded throughout the visual
system (Lopes Da Silva and Storm van Leeuwen, 1977; Salmelin and
Hari, 1994; Hari and Salmelin, 1997; Ciulla et al., 1999; Bollimunta
et al., 2008, 2011; Spaak et al., 2012). In addition to cortical sources of
α, recordings in behaving dogs and slice preparations of cat lateral
geniculate nucleus (LGN) have observed α-sources in thalamic nuclei,
particularly the LGN and pulvinar (Lopes da Silva et al., 1973; Hughes
et al., 2004).Moreover, the time-courses of sources in LGN and in partic-
ular the pulvinar were correlated with various α-sources in occipital
cortex (Lopes Da Silva et al., 1980). Furthermore, EEG-fMRI recordings
in humans have found resting-state fluctuations in posterior α-power
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to be correlated with fluctuations in blood-level-oxygenation-level
(BOLD) signal throughout the visual system and in several subcortical
nuclei (Goldman et al., 2002; Moosmann et al., 2003; Feige et al.,
2005). Thus, although posterior α-oscillations seem to involve
large-scale thalamo-cortical networks, the nature of their involvement
remains controversial (Silva et al., 1991; Karameh et al., 2006).

In particular, it is unclear if α-oscillations are generated at the source
locations identified by MEG or if they are generated at other locations
and propagate through white-matter pathways. For example,
α-oscillations in V1 might be generated within V1 itself (Liley et al.,
1999), reflect propagated oscillations that are generated in the LGN
(Lopes da Silva et al., 1974; Hughes et al., 2004), which is densely
connected to V1 via the optic radiation, or reflect reverberation within
thalamo-cortical loops (Robinson et al., 2001; Rennie et al., 2002).
Similarly, α-oscillations in different regions of the visual system might
be generated locally or reflect propagated oscillations from distant
cortical or thalamic regions. In this study, we assessed the contribution
of white-matter pathways in the propagation and coordination of pos-
terior α-oscillations. To this end, we combined MEG source-modeling
(Woolrich et al., 2011), diffusion tensor imaging (DTI) based probabilis-
tic fiber tracking (Behrens et al., 2003b), and biophysical modeling.

The kindof biophysicalmodelwe used in this study is referred to as a
neural mass model. Neural mass models have a long tradition (Wilson
and Cowan, 1973; Lopes da Silva et al., 1974; Freeman, 2004) and
have been applied to several EEG phenomena, including \alpha-oscilla-
tions (Lopes da Silva et al., 1974), event-related potentials (Jansen and
Rit, 1995), and epileptic seizures (Suffczynski et al., 2004). Neural
mass models describe the electrical behavior of a piece of neural tissue
in terms of macroscopic quantities and ignore the spatial extendedness
of the tissue (Deco et al., 2008). An extension of neural mass models are
so-called neural field models which can be thought of as consisting of a
sheet of neuralmasses and describe the electrical behavior of neocortex
in a spatially continuousmanner (Deco et al., 2008). Neuralfields have a
long tradition as well (Wilson and Cowan, 1973; Nunez, 1974; Wright
and Liley, 1995) and also have been applied to several EEG phenomena
including delta, alpha, beta, and gamma oscillations (Nunez et al., 2001;
Liley and Cadusch, 2002; Rennie et al., 2000, 2002; Robinson et al.,
2001), sleep (Robinson et al., 2002; Steyn-Ross et al., 2005), and general
anesthesia (Bojak and Liley, 2005; Hutt and Longtin, 2010; Hindriks and
van Putten, 2012). They provide a theoretical framework in which
different EEG phenomena can be integrated and their relationships be
investigated (Robinson et al., 2001; Breakspear et al., 2006).

Themotivation for using a neural massmodel in the present study is
that they make more feasible an initial investigation into how posterior
\alpha-oscillations might emerge from the topology of white-matter
pathways and provide a direction for more extented modeling studies.
It is of interest to note though, that the combination of neural mass
models with white-matter topological data has proven effective in
modeling the emergence of resting-state networks (RSNs) in blood-
oxygenation level-depend(BOLD) functional magnetic resonance imag-
ing (fMRI) imaging (Ghosh et al., 2008; Deco et al., 2009, 2011, 2013;
Honey et al., 2009; Cabral et al., 2011). Thus, the current study should
be regarded as an initial orientation that provides a startingpoint for
constructing more extended models of the spatio-temporal behavior
of \alpha-oscillations in human cortex.

We found that the assumption of a single α-source in the calcarine
sulcus (V1) could explain the source-strengths of α-oscillations
throughout the occipital lobe,medial posterior–parietal cortex and tem-
poral lobes. Furthermore, the source-strengths of α-oscillations in these
regions correlated with both the functional and anatomical connections
to V1, consistent with the assumption of a generator in V1. Although
this study does not rule out the possibility that α-oscillations are
generated throughout the cortex (Robinson et al., 2001; Rennie et al.,
2002; Nunez and Srinivasan, 2006), it establishes a central role of
V1-connectivity in coordinating α-oscillations in the visual system at
rest.

Materials and methods

MEG recordings

Ten subjects (3 males, 20–39 years old, mean 27.9) underwent an
eyes-closed resting-state MEG scan lasting 5 min on an Elekta
Neuromag (Elekta Neuromag Oy, Helsinki, Finland). Data preprocessing
included signal space separation, de-noising with independent compo-
nent analysis (ICA), source reconstruction and bandpass filtering of the
MEG signal. External noise was removed using Signal-Space Separation
(SSS) and the data was down-sampled to 200 Hz, using the MaxFilter
software (Elekta-Neuromag). Signal space separation is a spatial filter-
ing applied to the sensor space data that compensates for external inter-
ference and sensor artifacts. Thisworks by projecting theMEGdata onto
a basis set of spherical harmonics, followed by the removal of the basis
functions that correspond to sources originating fromoutside the sensor
array, before reconstructing the data (Taula et al., 2005). Harmonics
corresponding to sources originating from within the sensor array
were preserved whilst interfering sources from outside the environ-
ment surrounding the sensor array were rejected. The sensor-space
MEG data were de-noised using temporal ICA to remove cardiac,
50 Hz mains and, in some subjects, eye movement artifacts.

Specifically, the data were decomposed into 64 components using
fastICA (Hyvarinen, 1999) (64 is the rank of the MEG data after signal
space separation). Prior to the ICA decomposition, each sensor type
was normalized by its smallest eigenvalue to give an unbiased noise es-
timate across sensor types. Eye-blink, cardiac and mains interference
ICA components were manually identified by the combined inspection
of spatial topography and time course, kurtosis of the time course, and
frequency spectrum for all components. The artifact components are re-
moved by subtracting them from the data (Mantini et al., 2011). This
enabled simultaneous de-noising of the data and correction of the lead
fields (via the montage function in SPM8).

Each dataset was then co-registered into the Montreal Neurological
Institute (MNI) space by registering the canonical MNI template to the
Polhemus head shape data. A local sphere forward model (Huang
et al., 1999)was then estimated using the head shape and sensor geom-
etry. Before acquisition of the MEG data, a three-dimensional digitizer
(Polhemus Fastrack) was used to record each subject's head shape
relative to the position of the head position indicator (HPI) coils, with
respect to three anatomical landmarks, or fiducials, which could be
registered on the MRI scan (the nasion, and the left and right
preauricular points). A structural MRI was also acquired. Individual
meshes (including scalp, inner skull and cortical surfaces) are generated
froman individual subjects structuralMRI by applying the inverse of the
same deformation field needed to normalize the individual structural
image to an MNI template, to the canonical meshes derived from the
MNI template (Mattout et al., 2007). Coregistration of the MEG sensor
positions with the structural MRI and the meshes is then carried out
via an approximatematching of thefiducials in the two spaces, followed
by a more accurate surface-matching routine that fits the head-shape
function (measured by Polhemus) to the scalp mesh. This procedure
was carried out using scripts in the SPM8 package. Lead fields were
computed using a single-shell head model (Nolte, 2003) based on the
inner skull mesh using scripts in the SPM8 package.

Subsequently, the MEG data were bandpass filtered between 1 and
80 Hz. A LCMV beamformer was used to transform the original sensor
time-series into source-space time-series, that is, to reconstruct the ac-
tivity at the 90 center locations defined by the AAL brain parcellation.
The beamformer uses the forward model and sensor-space covariance
matrix to calculate a set of weights which spatially filter the signal so
that activity from outside the source is suppressed and the activity
from the chosen sources is extracted (Woolrich et al., 2011). The mag-
netometers and gradiometers were combined during beamforming by
normalizing the data and lead fields for each sensor type by its respec-
tive minimum eigenvalue; this effectively gives both classes of sensor
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