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A computational framework is presented for relating the kurtosis tensor for water diffusion in brain to tissue
models of brainmicrostructure. The tissuemodels are assumed to be comprised of non-exchanging compartments
thatmaybe associatedwith variousmicrostructural spaces separatedby cellmembranes.Within each compartment
the water diffusion is regarded as Gaussian, although the diffusion for the full system would typically be non-
Gaussian. The model parameters are determined so as to minimize the Frobenius norm of the difference between
the measured kurtosis tensor and the model kurtosis tensor. This framework, referred to as kurtosis analysis of
neural diffusion organization (KANDO), may be used to help provide a biophysical interpretation to the information
provided by the kurtosis tensor. In addition, KANDO combined with diffusional kurtosis imaging can furnish a
practical approach for developing candidate biomarkers for neuropathologies that involve alterations in tissue
microstructure. KANDO is illustrated for simple tissue models of white and gray matter using data obtained from
healthy human subjects.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Non-Gaussianity of water diffusionwithin the brain can be quantified
by the diffusional kurtosis tensor, which may be measured with MRI
using diffusional kurtosis imaging (DKI) (Hori et al., 2012; Jensen and
Helpern, 2010; Jensen et al., 2005; Lu et al., 2006; Poot et al., 2010;
Steven et al., 2014; Wu and Cheung, 2010). This kurtosis tensor allows
a number of rotationally invariant diffusion metrics to be calculated,
including the mean kurtosis (MK), the axial kurtosis, and the radial
kurtosis. These metrics are believed to reflect the heterogeneity of
the intra-voxel diffusion environment and are thus indicators of
microstructural complexity. A number of studies have shown that
kurtosis-based diffusion metrics are altered for a variety of neuropathol-
ogies, such as stroke (Cheung et al., 2012; Hui et al., 2012; Jensen et al.,
2011), cancer (Raab et al., 2010; Van Cauter et al., 2012), Alzheimer’s dis-
ease (Benitez et al., 2014; Falangola et al., 2013; Fieremans et al., 2013;
Gong et al., 2013), epilepsy (Gao et al., 2012; Lee et al., 2013, 2014;
Zhang et al., 2013), Parkinson’s disease (Kamagata et al., 2013, 2014),
attention deficit hyperactivity disorder (Adisetiyo et al., 2014; Helpern
et al., 2011), trauma (Grossman et al., 2012, 2013; Zhuo et al., 2012),
and autism (Lazar et al., 2014).

Since the kurtosis tensor is a pure diffusion measure, without any
explicit connections to specific properties of brain tissuemicrostructure,
a clear-cut biophysical interpretation of the information it provides for a
particular circumstance (e.g., brain region or disease) is often challenging
(Rudrapatna et al., 2014). It may therefore be useful to combine the
kurtosis tensor with tissue models that relate the diffusion information
of the kurtosis tensor to particular microstructural features of cellular
compartments. With the help of such models, the biological significance
of observed changes in kurtosis can be better understood. In addition, the
model parametersmay serve as candidate biomarkers formicrostructural
alterations associated with disease.

One such tissue model for the kurtosis tensor has been previously
proposed, although its applicability is limited to white matter for
which the axons are largely unidirectional (Fieremans et al., 2011). An
example of the relationships implied by this model is the formula

f axon ¼ Kmax

Kmax þ 3
; ð1Þ

where faxon is the fraction of MRI-visible water contained within axons
and Kmax is the maximum value of the diffusional kurtosis as a function
of the diffusion direction. This model has already been applied to
Alzheimer’s disease (Benitez et al., 2014; Fieremans et al., 2013), stroke
(Hui et al., 2012), and autism (Lazar et al., 2014).

The purpose of this study is to develop amore general computational
framework for relating the kurtosis tensor to tissue models of brain
microstructure. This method, which we call kurtosis analysis of neural
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diffusion organization (KANDO), accommodates a variety of models
that are suitable for both white matter and gray matter. The models
are assumed to consist of ensembles of non-exchanging, Gaussian
compartments. This is a plausible class of models that has been widely
used to describe non-Gaussian diffusion in brain (Alexander et al., 2002;
Assaf et al., 2004; Fieremans et al., 2011; Jespersen et al., 2007;
Panagiotaki et al., 2009, 2012; Wang et al., 2011; White et al., 2013;
Zhang et al., 2012). While the effects of water exchange between
compartments are not incorporated explicitly, their consideration is
important for a proper interpretation of these models.

The essence of KANDO is that themodel parameters are determined
by minimizing a cost function that corresponds to the square of the
Frobenius norm (Signoretto et al., 2011) of the difference between the
measured kurtosis tensor and the model kurtosis tensor. This contrasts
with the algebraic approach utilized by Fieremans and coworkers
(Fieremans et al., 2011) in that KANDO requires nonlinear optimization.
However, KANDO provides substantially more flexibility than is possible
with purely algebraic methods, allowing for a much broader range of
model types. Moreover, one can easily construct specific models for
KANDO that yield results closely matching those of Fieremans and
coworkers for white matter with unidirectional axons. In this sense,
KANDO may be regarded as an extension of this prior work.

KANDO is quite analogous to the conventional method of fitting
tissue models to the diffusion MRI (dMRI) signal (Assaf et al., 2004;
Ferizi et al., 2013; Jespersen et al., 2007; Panagiotaki et al., 2009, 2012;
Wang et al., 2011; White et al., 2013; Zhang et al., 2012) with a key
difference being that KANDO utilizes only the kurtosis and diffusion
tensors as inputs, rather than the full dMRI signal, in order to facilitate
a clearer biophysical interpretation of the kurtosis tensor information.
KANDO is particularly suitable as an adjunct for DKI, which is specifically
designed for estimating the kurtosis and diffusion tensors. One distinction
between KANDO and tissue modeling based on fits to the dMRI signal is
that KANDO does not require the specification of imaging parameters,
such as diffusion gradient directions and b-values, which may help to
reduce the dependence on experimental details of results obtained with
KANDO. Nonetheless, KANDO estimates for model parameters may be
indirectly affected by imaging parameters, as these can influence the
accuracy of the measured diffusion and kurtosis tensors (Jensen and
Helpern, 2010). As KANDO only includes information encompassed
by the kurtosis and diffusion tensors, it may be insensitive to certain
microstructural features that affect the full signal.

The main goal of this article is to describe the general theory under-
lying KANDO, and we illustrate KANDO for three simple models
intended to represent white matter and gray matter. For these models,
exemplary results are given based on DKI data obtained for healthy
human volunteers. In addition, numerical simulations are described
that examine potential sources of errors in parameter estimates obtained
with KANDO.

Theory

General framework

A fundamental assumption of KANDO is that the tissue model
consists of N+ 1 non-exchanging water compartments. Each individual
compartment is also assumed to have Gaussian diffusionwith its dynam-
ics being completely determined by its diffusion tensor. Let the diffusion
tensor for the nth compartment be indicated by D(n) and the correspond-
ingwater fraction by fn. Here thewater fractions are relative only towater
that is visible with dMRI. Thus some water pools with short T2, such as
water within myelin (Stanisz et al., 1999), might be excluded from the
model, depending on the echo time of the dMRI experiment. It should
be noted that the total diffusion dynamics of a model with two or more
Gaussian compartments will generally be non-Gaussian, as the sum of
two or more Gaussian distributions is a non-Gaussian distribution except
for the special case that all the distributions are identical.

It is physically appealing to associate the model compartments with
cellular compartments of the tissuemicrostructure, and this is generally
justified for cells with low permeability plasmamembranes. For example,
water withinmyelinated axons has an exchange timewith the surround-
ing extracellular space that is long compared to typical diffusion times
used for dMRI (Nilsson et al., 2013), and thus this compartment can
plausibly be approximated as non-exchanging. However, other cell
types, such as astrocytes, may have substantially shorter exchange times
(Badaut et al., 2011; Solenov et al., 2004). When the exchange time is
small compared to the diffusion time, a cellular compartment can be
regarded as being in fast exchange with the extracellular space, and it is
then effectively part of a larger composite compartment that includes
the extracellular space and possibly other cellular compartments also in
fast exchange. As there is currently limited knowledge of the exchange
times for glial cells and unmyelinated neurites, the precise correspon-
dence between model and cellular compartments may not always be
self-evident. When the exchange and diffusion times are comparable,
the model compartments can take on a more ambiguous “apparent”
status.

The total diffusion tensor for the model is

D ¼
XN
n¼0

f nD
nð Þ
; ð2Þ

where theN+1 compartments are numbered from n=0 to n=N and
with the water fractions being normalized so that

1 ¼
XN
n¼0

f n: ð3Þ

D is regarded as a measured quantity that is a fixed input from a
modeling perspective. It is convenient to introduce the “reduced”
diffusion tensors defined by

Δ≡ D
D

and Δ nð Þ ≡ D nð Þ

D
; ð4Þ

where D ¼ Tr Dð Þ=3 is the mean diffusivity for the total system. These
reduced tensors are dimensionless and serve to simplify the mathe-
matical expressions that follow. In terms of the reduced tensors,
Eq. (2) takes the form

Δ ¼
XN
n¼0

f nΔ
nð Þ
: ð5Þ

Since Δ depends only on D, it is also a given input for KANDO.
Let us now assume that the reduced diffusion tensors for compart-

ments n = 1, 2, …, N, as well as their corresponding water fractions,
are specified functions of a set of M model parameters (a1, a2, …, aM)
so that we have Δ(n)(am) and fn(am), for n= 1, 2,…, N. These functions
would be based on the biophysical assumptions for the water diffusion
dynamics in brain tissue that one wishes to employ. By applying
Eqs. (3) and (5), we also have

f 0 amð Þ ¼ 1−
XN
n¼1

f n amð Þ; ð6Þ

and

Δ 0ð Þ amð Þ ¼
Δ−

XN
n¼1

f n amð ÞΔ nð Þ amð Þ

1−
XN
n¼1

f n amð Þ
; ð7Þ

which determines f0 and Δ(0) in terms of the model parameters.
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