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In this paper we present a novel label fusion algorithm suited for scenarios in which different manual delineation
protocols with potentially disparate structures have been used to annotate the training scans (hereafter referred
to as “atlases”). Such scenarios arisewhen atlases havemissing structures, when they have been labeledwith differ-
ent levels of detail, or when they have been taken from different heterogeneous databases. The proposed algorithm
can be used to automatically label a novel scanwith any of the protocols from the training data. Further, it enables us
to generate new labels that are not present in any delineation protocol by defining intersections on the underling
labels. We first use probabilistic models of label fusion to generalize three popular label fusion techniques to the
multi-protocol setting:majority voting, semi-locallyweightedvoting andSTAPLE. Then,we identify some shortcom-
ings of the generalizedmethods, namely the inability to producemeaningful posterior probabilities for the different
labels (majority voting, semi-locally weighted voting) and to exploit the similarities between the atlases (all three
methods). Finally, we propose a novel generative label fusion model that can overcome these drawbacks. We use
the proposedmethod to combine four brainMRI datasets labeledwithdifferent protocols (with a total of 102unique
labeled structures) to produce segmentations of 148 brain regions. Using cross-validation, we show that the pro-
posed algorithm outperforms the generalizations of majority voting, semi-locally weighted voting and STAPLE
(mean Dice score 83%, vs. 77%, 80% and 79%, respectively). We also evaluated the proposed algorithm in an aging
study, successfully reproducing some well-known results in cortical and subcortical structures.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

Introduction

Automatic segmentation of brain structures fromMRI data makes it
possible to carry out neuroimaging studies at larger scales than manual
tracingswould, since the latter are very time consuming tomake.More-
over, automatic segmentation methods are also more repeatable and
reliable than their manual counterparts. Brain MRI segmentation has
been used in a number of applications, such as tractography (Yendiki
et al., 2011), surgical planning (Cline et al., 1990) and studies of aging
(Walhovd et al., 2005), brain development (Knickmeyer et al., 2008)
and pathologies like Alzheimer's disease (De Jong et al., 2008).

One family of supervised segmentation techniques that has become
popular in brain MRI is multi-atlas segmentation (Rohlfing et al., 2004).

In conventional atlas-based segmentation, the grayscale image of the
atlas is nonlinearly registered to the space of the test scan, and the
resulting transform is then used to warp the corresponding labels,
which provide an estimate of the segmentation. Since a single atlas is
not sufficient to cover the whole spectrum of variability within a popu-
lation, multi-atlas segmentation has emerged as a natural extension.
Usingmultiple atlases, this family of techniques producesmore accurate
segmentations (Awate and Whitaker, 2014) by: (1) independently
registering several atlases to the test scan; (2) using the resulting trans-
forms to deform the corresponding label images; and (3) combining the
registered label maps into a single estimate of the segmentation with a
label fusion algorithm. Multi-atlas segmentation is becoming wide-
spread for three reasons. First, the maturity of registration algorithms
(e.g., ANTs/SyN (Avants et al., 2008), Elastix (Klein et al., 2010)) enables
multi-atlas techniques to achieve very high performance. Second, the
public availability of such methods makes multi-atlas segmentation
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easy to implement. And third, the relative computational cost associated
with nonlinearly registering the atlases is quickly diminishing thanks to
the rapid increase in processing power of computers.

The choice of label fusion method is critical for the performance of
multi-atlas segmentation. Early algorithms include best atlas selection
(Rohlfing et al., 2004) and majority voting (Heckemann et al., 2006).
The former estimates the segmentation as the labels of the atlas that is
most similar to the test scan after registration. In this context, similarity
can bemeasuredwith the samemetrics that are typically used in image
registration, such as cross-correlation, mutual information or sum of
squared differences. Majority voting, on the other hand, operates at
the voxel level by locally assigning the most frequent deformed atlas
label at each spatial location – without considering the image intensity
information. The performance of majority voting can be increased by an
atlas selection process, inwhich only the deformed atlases that aremost
similar to the target scan are considered in the fusion (Aljabar et al.,
2009; Duc et al., 2013).

Later fusion methods compute the segmentation as a weighted
combination of the labels of the registered atlases such that higher
weights are given to more similar atlases. The weights can be global
(Artaechevarria et al., 2008) or local (Isgum et al., 2009; Coupé et al.,
2011; Wang et al., 2013; Sabuncu et al., 2010). Sabuncu et al.
(Sabuncu et al., 2010) have shown that many of these multi-atlas
methods can be written within a unified generative model. Another
popular label fusion approach is STAPLE (Warfield et al., 2004) and
its variants (Asman and Landman, 2012, 2013; Cardoso et al., 2013;
Akhondi-Asl and Warfield, 2013); while this method was originally
developed to combine multiple manual segmentations from differ-
ent human raters, it is increasingly being applied in the context of
multi-atlas label fusion.

All the aforementioned label fusion algorithms assume that all struc-
tures of interest are labeled in all atlases, which is a rather limiting con-
straint. Eliminating this requirement would have several practical
implications:

• It would enable us to combine training scans from different datasets
even if they have different sets of annotated structures. In turn, this
would make it possible to take advantage of the increasing amount
of heterogeneously labeled MRI data that are publicly available.

• It would also enable us to segment structures that are not included
in any of the datasets, but defined as the intersection of labels. For
instance, the intersection of the lateral postcentral region and the ce-
rebral gray matter would define the primary somatosensory cortex.

• It would allow for the fusion of segmentations from different modal-
ities with different field of views and resolution. For instance, it
would be possible to combine standard resolution brain MRI (1 mm
resolution) with high-resolution MRI with limited field of view or
even histology or optical coherence tomography data.

• Itwould be useful if onewere tomanually relabel a subset of atlases to
include finer structures in the annotations. For example, in a large
dataset with the hippocampi already labeled, an expert rater can ad-
ditionally delineate the hippocampal subfields – which is extremely
difficult and time consuming – in just a few cases. Traditional label fu-
sion methods would only be able to use these few scans in the seg-
mentation, having to disregard the information in all the scans in
which the subfields are not labeled.

Despite the practical implications that a label fusion algorithm
which allows for heterogeneously labeled atlases would have, this
direction remains largely unexplored in the literature. To the best of
our knowledge, only a particular case of label fusion with heteroge-
neous labels has been considered so far: the situation in which some
of the labels are missing in some of the atlases. To tackle this problem,
Landman et al. (Landman et al., 2009, 2010, 2012) propose an ad-
hoc solution by modifying the STAPLE framework such that unla-
beled voxels are ignored and the confusion matrix entries

corresponding to the missing structures are fixed. Commowick et al.
(Commowick et al., 2012) propose ameliorating the effect of missing
labels by adding a prior on the confusion matrices to the STAPLE al-
gorithm that, when a label is missing, encourages higher a transition
probability from that label to the background. However, such an ap-
proach treats as background all the voxels that have not been labeled
with one of the foreground labels.

In this study, we present a family of probabilistic models for label fu-
sion that make it possible to use atlases that have been annotated with
different protocols. In ourmodels, the atlases are assumed to have a hid-
den “fine” segmentation with all the structures present in the training
data – including those defined by intersections of labels. The actual ob-
served labels are assumed to have been obtained by collapsing groups of
hidden fine labels into more general, coarse labels.

The contribution of this study is twofold:

i. We use probabilistic models of label fusion to extend three popular
methods (majority voting, semi-locally weighted fusion and STAPLE)
to the scenario of heterogeneously labeled atlases.

ii. We propose a new generative model for label fusion that can over-
come the limitations of these generalizations – the inability to pro-
duce meaningful posteriors and to exploit the similarities between
the atlases – and show that it outperforms the generalizations in
experiments with four datasets.

The rest of this paper is organized as follows. In theMethods section,
we describe the general framework for label fusion with heteroge-
neously labeled atlases, propose the generalizations of the different
methods, identify their disadvantages, and present a new fusion algo-
rithm to address their shortcomings. In the Experiments and results
section, we assess the performance of the different algorithms with
experiments on four different datasets. Finally, the Conclusion and
discussion section closes the paper.

Methods

In this section, we first introduce the general framework and
define the variables that we will use throughout the paper. Then, we
present the generalizations of majority voting, semi-locally weighted
voting and STAPLE and identify their weaknesses. Finally, we introduce
a label fusion method that addresses these shortcomings.

General framework

Throughout the remainder of this paper, we will assume that a test
scan consisting of J voxels is to be segmented. We will use y =
{yj, j = 1, …, J} to refer to the image intensities, and s = {sj, j =
1, …, J} to refer to its hidden, underlying segmentation. Let us also
assume that a set of N atlases has been pre-registered to a test scan
with a non-linear algorithm. Let {in} (where in = {inj, j = 1, …, J}) be
the observed image intensities of the N registered atlases, and let {ln}
(where ln = {lnj, j = 1, …, J}) be the corresponding discrete labels, de-
fined at the finest detail level. Their values range from 1 to L, the total
number of fine labels.

These deformed labels {ln} are not directly observed; instead, we
have access to a different set of coarse labels {cn} (where cn =
{cnj, j = 1, …, J}), which correspond to the actual manual delineations.
The coarse labels {cn} are obtained by collapsing the fine labels {ln}
into different groups of labels by means of a set of N deterministic,
protocol-specific functions: cnj = fn(lnj). A protocol function could, for
instance, collapse the hippocampal subfields into a single hippocampal
label. Having a separate fn for each atlas enables us to combine different
labeling protocols. Different protocol functions can collapse the same
fine label into different coarse labels; for instance, orbital cortex could
be collapsed into the cerebral cortex by oneprotocol and into the frontal
lobe by another.
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