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The functional magnetic resonance (fMRI) baseline is known to drift over the course of an experiment and is often
attributed to hardware instability. These ultraslow fMRI fluctuations are inseparable from blood oxygenation level
dependent (BOLD) changes in standard single echo fMRI and they are therefore typically removed before further
analysis in both resting-state and task paradigms. However, some part of these fluctuations may be of neuronal or-
igin, as neural activity can indeed fluctuate at the scale of several minutes or even longer, such as after the admin-
istration of drugs or during the ultradian rhythms. Here, we show that it is possible to separate the slow BOLD
and non-BOLD drifts automatically using multi-echo fMRI and multi-echo independent components analysis
(ME-ICA) denoising by demonstrating the detection of a visual signal evoked from a flickering checkerboard with
slowly changing contrast.

Published by Elsevier Inc.

Introduction

The functional magnetic resonance imaging (fMRI) baseline is known
to drift over the course of an experiment (Aguirre et al., 1997; Zarahn
et al., 1997). These drifts are nonlinear, vary by voxel, and are difficult to
distinguish from slow changes in brain response to pharmaceutical
drugs (Wise et al., 2004) or spontaneous fluctuations in the resting state
(Biswal et al., 1995). They are attributed to scanner instability (Smith
et al., 1999), pooling of blood in veins (Lee et al., 1995), subject motion
and incomplete motion correction (Bandettini et al., 1993), and brain
physiology changes (Yan et al., 2009). In standard single echo blood oxy-
gen level dependent (BOLD) fMRI, the non-BOLD drifts are inseparable
from the datamaking the detection of slow BOLD related change difficult.
We show that it is possible to do this with multi-echo (ME) fMRI.

Common approaches to remove drift in preprocessing of single echo
fMRI data have involved using linear, low-order polynomial or spline
models (Bandettini et al., 1993; Liu et al., 2001; Kay et al., 2008), high
pass filtering (Lund et al., 2006), or ICA component removal (Thomas
et al., 2002). Improper modeling and removal of drifts affects the sensi-
tivity of the statistical results (Lowe and Russell, 1999) and also limits
the task or frequencies which can be measured in these experiments.
For task paradigms the strategy has been to use box-car and repetitive
event designs using frequencies that exceed scanner drift frequencies
(Birn et al., 2002). For resting state scans, the data are typically band-
pass filtered to remove frequencies that are deemed unlikely to be func-
tionally relevant (Cordes et al., 2001). However, these approaches do

not work in the case of an experiment that has only one transition
(e.g. bolus injection of a drug) or very slow changes (sleep, circadian
rhythms, transcranial magnetic stimulation (TMS)). In these cases it is
particularly important to properly model the baseline changes in
order to accurately measure the desired BOLD responses, which is com-
plicated by long run lengths and potentially coupled subject motion.

There are several dual-echo techniques that have been proposed
that attempt to capture baseline drift in a very short echo acquired in
the space before the standard echo (Talagala et al., 1999; Bright and
Murphy, 2013; Ing and Schwarzbauer, 2012). However, there will al-
ways be some BOLD weighting in the measured short echo time series
due to the long acquisition window required to obtain the images,
which increases the effective echo time (TE). Speck and Hennig
(1998) used an eight echo acquisition to simultaneously map both T2⁎

and spin density or inflow effects over a few slices in the brain. The abil-
ity to calculate both of these parameters at every time point comes at
the cost of reduced brain coverage and increased repetition time due
to the large number of echoes required to obtain good simultaneous pa-
rameter estimates. This makes the method difficult to extend to cogni-
tive studies, which typically require whole brain coverage. An alternate
MRI functional imaging technique that intrinsically measures a quanti-
tative baseline is arterial spin labeling (ASL) (Aguirre and Detre, 2012).
ASL time series do not exhibit signal drifts owing to the subtraction of
the control and tag images to generate flow images. Wang et al.
(2003) demonstrated the benefits of using ASL for long task block
lengths and runs separated in time by over 2 min in length. Notably,
the BOLD data in this study was high-pass filtered and inherently limit-
ed their ability to detect the longer block tasks. However, the reduced
coverage, slower measurement times, and lower signal-to-noise ratio
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(SNR) of ASL, as compared to BOLD fMRI, remain problematic for appli-
cations to many studies (Wang et al., 2011). Furthermore, the insensi-
tivity of ASL to slow motion and drifts is at the expense of enhanced
motion sensitivity to short-termmotion on the time scale of the TR aris-
ing from the pairwise image subtractions.

Improvements in imaging acquisition have made it possible to trade
high resolution single echo images for coarser resolution at multiple
echo times per repetition with minimal sacrifice in repetition time (TR)
and spatial coverage for fMRI (TEs: 14,30, 46 ms, 2 s TR, 28 slices with
cubic resolution of 3.5 mm, for example). Multi-echo acquisition enables
themeasurement of TE-dependence of the signal (Peltier and Noll, 2002)
but is stillmore frequently used inquantitative T2⁎measurements than in
fMRI (Gowland and Bowtell, 2007). In the context of fMRI, the acquired
echoes are typically combined to improve the overall image SNR and re-
cover signal dropout (Posse et al., 1999; Poser et al., 2006). The recently
developed multi-echo independent components analysis (ME-ICA)
denoising method (Kundu et al., 2013) uses TE-dependence throughout
the analysis pipeline to separate the data into primarily BOLD and non-
BOLD subspaces in an automatic, data driven way that is based on the
principles of BOLD contrast. ME-ICA differs from other automated ICA
component selection methods in that no restrictions are placed on the
time–frequency or anatomical localization characteristics of the compo-
nents in the selection process. Therefore, it has the potential to separate
artifactual, hardware-related drifts, which would fall into the non-BOLD
subspace, from hemodynamic signal changes that are likely of neuronal
relevance. Importantly, this enables study of low-frequency BOLD compo-
nents that would ordinarily be discarded in the band-pass filtering step
that is conventionally applied during preprocessing.

In this study, we use a visual taskwith slowly changing contrast over
5 min as an example of a slow BOLD change and we compare conven-
tional preprocessing to ME-ICA denoising. As well, we investigate the
temporal, amplitude properties of the time series and the sensitivity of
themethods in differentiating two slow slope changes.We demonstrate
the ability to separate the sigmoid task response from baseline drifts
usingME-ICA denoising in a casewhere the task is undetectable in con-
ventionally preprocessed data.

Methods

Subjects

Fifteen healthy volunteers (aged 21–39, 8males) participated in this
study. Informed consent was obtained for each subject in accordance
with the Combined Neuroscience Institutional Review Board of the Na-
tional Institutes of Health. Subjects were instructed to remain awake, lie
still and fixate on the cross in the center of the screen during all visual
tasks. The entire experiment had a duration of an hour and a half of im-
aging, which consisted of one anatomical and seven functional scans.

MR Image acquisition

Scanning was performed on a 3T Skyra (Siemens GmBH, Germany)
using a 32 channel head coil. A whole brain 3D T1 MPRAGE anatomical
scanwas performedwith a cubic resolution of 1mm (TR: 2.5 s, TI: 1.1 s,
TE: 5.4 ms, flip angle: 7°), matrix 256 × 256 × 256, field-of-view
25.6 cm, 6min, followed by a 10 minute resting state scan and 7.5 min-
ute multi-echo EPI fMRI visual tasks with scan parameters of TE: 13, 30,
43ms, TR: 2 s, at a cubic resolution of 3.5mmwith GRAPPA acceleration
factor 2 over 28 slices covering the whole brain (flip angle 90°, matrix
64 × 64, field-of-view 22.4 cm, interleaved slice acquisition). Four
dummy scans preceded each run to ensure steady-state equilibration
for the saved data. Respiratory and cardiac traces were recorded using
respiratory bellows and pulse oximeter with AcqKnowledge software
(BIOPAC Systems Inc., Goleta, CA).

Visual contrast tasks

The visual stimuli consisted of a full visual field checkerboard revers-
ing from black to white at a rate of 7.5 Hz. The timing and amplitude of
the stimuli are illustrated in Fig. 1 and consist of a) a contrast localization
run with 15 s blocks of one of four different contrast levels: 2.5%, 5%, 20%,
and 100%, alternating with a fixation cross (0% contrast), there are a total
of 16 contrast blocks or four repetitions of each contrast b) a long block of
80 s at 20% contrast followed by 80 s of fixation (0% contrast) c) a long
block of 80 s at 5% contrast followed by 80 s of fixation d) a shorter
block of 60 s at 20% contrast followed by 100 s of fixation e) a sigmoid
ramp (at slope of −1/40) from 20% to 0% contrast over the course of
2min and f) a sigmoid ramp(at a slopeof−1/60) from16% to0% contrast
transition over the course of 5 min. Instructions to fixate on the cross in
the middle of the checkerboard were reiterated between scans to ensure
the subject remained awake and on task for the duration of the experi-
ment. The flanking pairs of 15 s blocks at 80% in each task served as an
embedded vigilance check for task compliance and are not explicitly con-
sidered further.

Preprocessing

Processing of the fMRI data was performed using AFNI (Cox, 1996),
compile date: 17 Dec, 2013. Each echo was pre-processed separately
as described below prior to ME-ICA denoising.

Single echo
The anatomical image was first skull-stripped and then warped to

Talairach coordinates (auto_tlrc, TT_N27 template). The anatomical
image was then registered to the first frame of the middle echo
(30 ms) data and 12 parameter affine coregistration was computed
using the local Pearson correlation (LPC) cost function (Saad et al.,
2009) with the gray matter segment of the EPI base image (3dSeg) as
the LPC weight mask. Motion correction (3dvolreg) for all echoes was
performed using the first frame of themiddle echo as reference. The es-
timated six-parameter rigid body motion parameters were combined
with the anatomical–functional coregistration parameters into a single
alignment matrix. The images from each TE were slice-time corrected
(3dTshift) and subsequently simultaneously motion corrected and spa-
tially aligned (3dvolreg) using the combined alignment matrix.

Optimal echo combination
The optimal echo time for imaging the BOLD effect is where TE

equals T2⁎, however, T2⁎ varies across the brain and as such, single echo
images are not optimally sensitive to this variation. The acquisition of
multiple echoes enables the calculation of an “optimal” T2⁎ weighted av-
erage of echoes that recovers signal in drop-out areas and improves
contrast-to-noise (CNR) ratio throughout the brain (Posse et al., 1999;
Poser et al., 2006). The optimal echo combination (OC) as found in
Poser et al. (2006) used here is described below.

The signal at an echo, n, varies as a function of the initial signal inten-
sity So and transverse susceptibility T2⁎ = 1 / R2⁎ and is given by the
mono-exponential decay:

S ¼ So � e−TEn=T
�
2 ð1Þ

which can be linearized to simplify estimation of T2⁎ and So as the slope
and intercept of a line by least squares fitting:

ln Sð Þ ¼ ln Soð Þ−TEn � R�
2 ð2aÞ

T�
2 ¼ − TEn

ln S=Soð Þ ð2bÞ
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