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The human brain processes information viamultiple distributed networks. An accuratemodel of the brain's func-
tional connectome is critical for understanding both normal brain function as well as the dysfunction present in
neuropsychiatric illnesses. Current methodologies that attempt to discover the organization of the functional
connectome typically assume spatial or temporal separation of the underlying networks. This assumption devi-
ates from an intuitive understanding of brain function, which is that of multiple, inter-dependent spatially over-
lapping brain networks that efficiently integrate information pertinent to diverse brain functions. It is now
increasingly evident that neural systems use parsimonious formations and functional representations to effi-
ciently process informationwhileminimizing redundancy. Hencewe exploit recent advances in themathematics
of sparse modeling to develop a methodological framework aiming to understand complex resting-state fMRI
connectivity data. By favoring networks that explain the data via a relatively small number of participating
brain regions, we obtain a parsimonious representation of brain function in terms of multiple “Sparse Connectiv-
ity Patterns” (SCPs), such that differential presence of these SCPs explains inter-subject variability. In thismanner
the sparsity-based framework can effectively capture the heterogeneity of functional activity patterns across in-
dividuals while potentially highlighting multiple sub-populations within the data that display similar patterns.
Our results from simulated as well as real resting state fMRI data show that SCPs are accurate and reproducible
between sub-samples aswell as across datasets. These findings substantiate existing knowledge of intrinsic func-
tional connectivity and provide novel insights into the functional organization of the human brain.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The human brain is a complex system that consists of functionally
specialized units working in unison to generate responses to internal
and external stimuli. Resting-state fMRI (rs-fMRI) is a powerful tool
for understanding the large-scale functional neuroanatomy of the
brain through connectivity that is present independent of task perfor-
mance. Functional connectivity is defined as correlations between the
spontaneous fluctuations in the fMRI time-series among different
regions. Prior research has shown that despite the absence of task
performance, rs-fMRI connectivity can be used to delineate major func-
tional brain systems as networks (Biswal et al., 1995; Fox et al., 2006;
Vincent et al., 2008), often based on prior knowledge of a “seed” region
of interest, and has demonstrated that network organization is altered
in neuropsychiatric and neurological illnesses such as schizophrenia
(Venkataraman et al., 2012) and Alzheimer's (Greicius et al., 2004).

Thus, an accurate description of the brain's functional connectome is a
critical prerequisite for understanding both normal brain function and
its aberrations in disease.

Identifying these networks in a data-driven manner is a particularly
challenging task due to the spatio-temporal complexity of rsfMRI.
Robust identification requires the specification of the underlying com-
mon property that binds regions together to form a network. For
example, graph partitioning approaches, such as InfoMap (Rosvall and
Bergstrom, 2008) assume that any region of the brain can belong
to only one brain network. This approach was applied to rsfMRI in
Power et al. (2011). Retaining only high positive correlation values,
the authors identified multiple spatially separated networks, or “sub-
graphs”, whose regions consistently co-activate across subjects, and re-
semble functional systems discovered in task fMRI. However, up to date
knowledge of the brain's functional organization seems to suggest that
brain regions can participate in multiple functional networks. Graph
partitioning approaches such as InfoMap do not allow for spatial over-
lap, and hence cannot identify such networks. Another disadvantage
of such an approach is that it limits its analysis to strong positive corre-
lations, while removing negative and weak edges from the graph that
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could be informative, especially if considered collectively as a part of a
distributed network (Fox et al., 2005; Keller et al., 2013).

Alternative approaches addressing some of these issues have been
proposed in other fields. The hierarchical clustering algorithmproposed
in Newman (2004) finds nested communities but does not allow for
overlaps at each level in the hierarchy. The notion of “link communities”
introduced in Ahn et al. (2010) is elegantly able to handle overlaps by
assigning unique membership to edges rather than nodes, naturally
resulting in multiple assignments per node. Approaches like correlation
clustering (Bansal et al., 2004) and the Potts model based approach
proposed in Traag and Bruggeman (2009) are partitioning approaches
which allow negative values. Since most of these methods are used
to analyze social networks, they interpret negative edge links as repul-
sion, and hence attempt to assign negatively connected groups to
different communities. While this may be appropriate for social net-
works, in resting state fMRI, highly negative edges imply strong anti-
correlation — meaning that despite opposing phase information, these
nodes express the same information, since they are strongly statistically
dependent. Allocating anti-correlated regions to the same network can
provide interesting new insights into the functional organization of
the brain. This leads to the formation of networks where topolog-
ically distinct partitions with similarly high values of modularity can
be formed in a network. Most graph-theoretic approaches are ill-
equipped to handle this scenario (Rubinov and Sporns, 2011).

Alternately, continuous matrix factorization approaches like Princi-
pal Component Analysis (PCA), Independent Component Analysis
(ICA) or Non-negative Matrix Factorization (NMF) are applied directly
to the time-series to obtain a set of basis, where each vector is a set of
weights, one for each node. In some cases, matrix factorization can be
interpreted as soft-clustering, or a continuous relaxation of the discrete
clustering problem. For example, it has been shown that components
obtained using Principal Component Analysis (PCA) are a continuous
relaxation to the discrete clusters obtained using K-means (Ding
and He, 2004). The symmetric Non-Negative Matrix Factorization
(NMF) model is considered to be the continuous equivalent to kernel
K-means and spectral clustering approaches (Ding et al., 2005). While
PCA also exploits the second-order moment (correlations) to perform
clustering, ICA incorporates higher-order moments to reveal sub-
networks that aremaximally independent. Such continuous approaches
do not suffer from issues of non-overlap and negative values, but
their main drawback is the lack of interpretability of the resulting com-
ponents. The resulting basis vectors are dense, i.e., the weight of every
node is typically non-zero, making clustering inference difficult. Ap-
proaches such as Independent Component Analysis (ICA) (Hyvarinen,
1999) are driven by the assumption of maximal spatial or temporal in-
dependence between networks. Spatial ICA is widely applied to rsfMRI
data to obtain spatially independent components, commonly referred
to as “Intrinsic Connectivity Networks (ICNs)” (Calhoun et al., 2003).
In practice, ICNs found using Spatial ICA are usually non-overlapping.
To address this issue of non-overlap, the study by Smith et al. (2012) ap-
plied Temporal ICA to rsfMRI data and found multiple functional brain
networks, or “Temporal Functional Modes (TFMs)”. Although this is a
significant advancement, these networks have been identified on the
basis of independent temporal behavior, i.e., lacking between-network
interactions, which is contrary to the notion that brain systems often
act in concert during complex cognitive functioning, for instance, for ex-
ecutive functioning (Dosenbach et al., 2006).

A major disadvantage of connectivity based approaches is their in-
ability to directly quantify inter-subject variability in functional connec-
tivity, requiring additional post-processing and analysis. An important
source of variation across subjects is the average strength of networks.
In this scenario, we assume that the inter-subject variability is intro-
duced due the variation in the strength of each network across subjects.
This could possibly be due to the extent to which (how much and for
how long) that functional unit is recruited in each subject, or as an indi-
cator of functional development or abnormality. There are studies that

have found strong relationships between the clinical variable of interest
and the strength of such intrinsic rsfMRI networks (von dem Hagen
et al., 2013; Mayer et al., 2011; He et al., 2007; Satterthwaite et al.,
2010). Another scenario that introduces inter-subject variability is in
the membership of nodes to networks; this was modeled in Ng et al.
(2012). In these prior clinical studies, inter-subject variability did not
play a role in network identification; rather, average functional connec-
tivity (strength) was computed after network identification. Hence
quantifying inter-subject variability in connectivity in an automated,
data-driven manner is crucial.

In this paper we propose a method that addresses these limitations.
Motivated by models of neuronal activity (Vinje and Gallant, 2000), we
propose the use of spatial sparsity to drive network identification. In a
neuronal sparse coding system, information is encoded by a small num-
ber of synchronous neurons that are selective to a particular property of
the stimulus (e.g. edges of a particular orientation within a visual stim-
ulus). Multiple such spatial patterns of neurons constitute a sparse neu-
ral basis which acts in concert in response to the stimulus. A nearly
infinite number of stimuli can be parsimoniously encoded by varying
the proportion in which these patterns are combined.

Extending this idea to rs-fMRI, we assume that the observed sponta-
neous activity arises from the concerted activity of multiple “Sparse
Connectivity Patterns (SCPs)” that encode system-level function, similar
to sparse codes that are present at the level of neurons. Each SCP con-
sists of a small set of spatially distributed, functionally synchronous
brain regions, forming a basic pattern of co-activation. These SCPs cap-
ture the range of resting functional connectivity patterns in the brain, al-
though they do not necessarily need to be present in each individual or
subsets of individuals. Using spatial sparsity as a constraint, we learn the
identity of these SCPs and the strength of their presence in each individ-
ual, revealing the heterogeneity in the population. Sparsity-based ap-
proaches bridge the gap between discrete clustering techniques and
continuous dimensionality reduction approaches. The proposed meth-
od is not limited by problems related to negative correlations, overlap-
ping sub-networks or modular degeneracy. The proposed approach is
motivated by methods proposed for computer vision and machine
learning applications in Sra and Cherian (2011) and Sivalingam et al.
(2011). A preliminary version of this method was used in Eavani et al.
(2013, 2014) but for different objectives, which was to find networks
that characterize temporal variations and two-group differences in con-
nectivity respectively. In this paper, the proposed method focuses on
finding common networks that characterize average whole-brain func-
tional connectivity in a group of subjects, while capturing inter-subject
variations. The performance of themethod is evaluated using simulated
data and multiple resting-state fMRI datasets.

In the following sections, we describe the SCPs obtained in a rsfMRI
dataset of young healthy adults, and how they compare to existing
knowledge of functional organization of the brain. We investigate the
accuracy and reproducibility of SCPs vis-a-vis sub-graphs, ICNs and
TFMs using simulated data as well as real rsfMRI data. Furthermore,
we provide evidence of inter-subject variability in the presence of
SCPs, which is a valuable measurement that can facilitate inter-group
comparisons in clinical studies.

Identification of Sparse Connectivity Patterns

The objective of ourmethod is to find SCPs consisting of functionally
synchronous regions, and are smaller than the whole-brain network.
The information content within any one of these SCPs is also relatively
low, since all the nodes within an SCP are correlated, and express
the same information. Hence, if a correlation matrix were constructed
for each of these SCPs, it would show two properties — (1) large
number of edges with zero weights, or sparsity and (2) low information
content — or rank deficiency. Our method takes as input correlation
matrices and finds SCPs that satisfy both properties. We assume that if a
set of ROIs act as a functional system, then, in a set of normal subjects,
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