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1 MEG source reconstruction based on identification of directed source
2 interactions on whole-brain anatomical networks
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18Wepresent anMEG source reconstructionmethod that simultaneously reconstructs source amplitudes and iden-
19tifies source interactions across the whole brain. In the proposed method, a full multivariate autoregressive
20(MAR) model formulates directed interactions (i.e., effective connectivity) between sources. The MAR coeffi-
21cients (the entries of the MAR matrix) are constrained by the prior knowledge of whole-brain anatomical net-
22works inferred from diffusion MRI. Moreover, to increase the accuracy and robustness of our method, we
23apply an fMRI prior on the spatial activity patterns and a sparse prior on the MAR coefficients. The observation
24process of MEG data, the source dynamics, and a series of the priors are combined into a Bayesian framework
25using a state-space representation. The parameters, such as the source amplitudes and the MAR coefficients,
26are jointly estimated from a variational Bayesian learning algorithm. By formulating the source dynamics in
27the context of MEG source reconstruction, and unifying the estimations of source amplitudes and interactions,
28we can identify the effective connectivity without requiring the selection of regions of interest. Our method is
29quantitatively and qualitatively evaluated on simulated and experimental data, respectively. Compared with
30non-dynamicmethods, inwhich the interactions are estimated after source reconstructionwith no dynamic con-
31straints, the proposeddynamicmethod improvesmost of theperformancemeasures in simulations, and provides
32better physiological interpretation and inter-subject consistency in real data applications.

33 © 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
34 (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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39Q3 Introduction

40 There are two fundamental functional principles of the brain:
41 functional specialization and functional integration (Tononi et al.,
42 1994; Friston, 1994). Identifying functionally specialized brain regions
43 (e.g., for sensory processing, motor control, and cognitive processing)
44 has been a long-term focus of neuroimaging studies. However, for a
45 true understanding of themechanisms underlying brain function, eluci-
46 dating the scheme of dynamic integration between these functionally
47 specialized brain regions is indispensable. This topic has received grow-
48 ing interest in recent years (Hutchison et al., 2013).
49 Magnetoencephalography (MEG) and electroencephalography
50 (EEG) provide ways to investigate such dynamic integration of brain
51 functions (Schoffelen and Gross, 2009; Palva and Palva, 2012), because
52 of their high temporal resolution and large reflection of neuronal elec-
53 trical activity (Hämäläinen et al., 1993; Nunez and Srinivasan, 2006).
54 The richness of the temporal information in MEG/EEG allows capturing
55 temporal propagation, or event-related dynamics, of neuronal activity

56occurring overmillisecond time scales, which cannot be easily achieved
57by functional magnetic resonance imaging (fMRI). In contrast to the ex-
58cellent temporal resolution, the spatial resolutions of MEG and EEG are
59limited; the spatial distribution of neuronal current sources cannot be
60uniquely determined from the measurements, unless a priori knowl-
61edge or assumptions are imposed as constraints on current sources
62(Baillet et al., 2001).
63Numerous source reconstruction methods have been developed
64over the past three decades. These methods can be categorized into
65three approaches; the equivalent current dipole approach, the linear
66distributed source approach, and the spatial filtering approach. In
67the equivalent current dipole approach, a small number of focal
68sources are pre-determined and their locations and amplitudes are
69estimated by non-linear optimization algorithms (Scherg and Von
70Cramon, 1985; Mosher et al., 1992). The linear distributed source ap-
71proach allocates a large number of sources to grid points over the
72whole brain volume or surface. The amplitude of all sources is simul-
73taneously estimated by solving a system of linear equations. Since
74the linear equations are underdetermined, additional constraints or
75prior information are necessary to obtain a unique solution. Prior as-
76sumptions used in linear distributed solvers include a spatial prior
77forming minimum l2 norm regularization (MNE; Hämäläinen and
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78 Ilmoniemi, 1994), spatial smoothness priors (LORETA and its variant;
79 Pascual-Marqui et al., 1994; Pascual-Marqui, 2002), spatial sparseness
80 priors (Matsuura and Okabe, 1995; Uutela et al., 1999; Sato et al.,
81 2004; Friston et al., 2008; Wipf et al., 2010), temporal smoothness
82 priors (Baillet and Garnero, 1997; Schmitt et al., 2001; Daunizeau
83 et al., 2006), temporal basis function priors (Trujillo-Barreto et al.,
84 2008; Ou et al., 2009; Bolstad et al., 2009), and fMRI-based spatial priors
85 (Dale et al., 2000; Sato et al., 2004; Daunizeau et al., 2007; Henson et al.,
86 2010; Ou et al., 2010). In the spatial filtering approach, an optimal spa-
87 tial filter, which maps the sensor measurements to the current source
88 amplitude at each single grid point in the brain, is computed. A popular
89 method for this purpose is the linear constrained minimum variance
90 (LCMV) beamformer (Van Veen et al., 1997). LCMV is used to identify
91 resting-state MEG functional connectivity for neuroscience research
92 (Brookes et al., 2011; Hipp et al., 2012). Wipf and Nagarajan (2009)
93 have recently proposed a framework unifying the beamformer method
94 and some distributed source methods.
95 In source reconstruction from the linear distributed source ap-
96 proach, introducing prior constraints on the spatiotemporal dynam-
97 ics of source activities is of particular interest; this type of constraint
98 complements other commonly used constraints (typically spatial)
99 and introduces additional knowledge into the source reconstruction
100 process, for example, on dynamic properties of neuronal popula-
101 tions, anatomical connections between brain areas, and transmission
102 delays of neuronal activities. This knowledge potentially facilitates
103 the extraction of information on directed interactions (i.e., effective
104 connectivity) between sources, while reconstructing spatial source
105 distributions from MEG/EEG data. The spatiotemporal dynamics
106 reflects the generative nature of neuronal current sources, and is
107 readily incorporated into a state-space representation. To formulate
108 such dynamics, previous state-space methods have adopted linear
109 autoregressive models with spatially local interactions (Galka et al.,
110 2004; Lamus et al., 2012) and self-interactions (Yamashita et al.,
111 2004; Daunizeau and Friston, 2007; Fukushima et al., 2012). These
112 methods extend an approach that imposes a simple prior assump-
113 tion (such as a temporal smoothness prior in Schmitt et al., 2001)
114 on the source dynamics (the effectiveness of imposing simple tem-
115 poral smoothness is critically evaluated by Dannhauer et al., 2013).
116 Nevertheless, these methods still cannot elucidate the long-range in-
117 teractions across brain areas. This problem was first solved by Olier
118 et al. (2013), who represented these interactions using the full mul-
119 tivariate autoregressive (MAR) model. However, in this model, the
120 spatiotemporal dynamics was formulated in a low-dimensional la-
121 tent space rather than in the source space.
122 To allow the long-range interactions to be directly estimated in the
123 source space, we extend the previous state-space methods into a new
124 MEG source reconstruction method. To achieve this goal, the full MAR
125 model is implemented in the high-dimensional source space. The struc-
126 ture of the MAR model is informed by whole-brain anatomical net-
127 works inferred from diffusion MRI (dMRI). More specifically, the MAR
128 coefficients (entries of the MAR matrix) associated with pairs of ana-
129 tomically connected sources according to dMRI, are estimated from
130 the data, while the others are fixed at zero. The time lags of the MAR
131 model are determined from the mean fiber lengths between pairs of
132 source locations. The anatomical long-range connectivity has been
133 used as a constraint in forward modeling of neuronal dynamics
134 (Honey et al., 2007; Ghosh et al., 2008; Deco et al., 2009), and in esti-
135 mating the effective connectivity from fMRI data (Stephan et al., 2009;
136 Woolrich and Stephan, 2013). The a priori knowledge of anatomical
137 connectivity also reduces the prohibitively large number of model pa-
138 rameters (in our scenario, from order 106 to order 105 at minimum),
139 thereby improving the feasibility of the estimation. Using this prior in-
140 formation, we can simultaneously estimate the current sources and
141 the source-space effective connectivity. This joint estimation frame-
142 work distinguishes our method from existing approaches (David et al.,
143 2006; Owen et al., 2009; Hui et al., 2010; Brookes et al., 2011; Hipp

144et al., 2012; de Pasquale et al., 2012) in which the source time courses
145and the source connectivity are sequentially estimated. With a low-
146dimensional MAR model, it was demonstrated that the joint approach
147yielded better connectivity estimates than the sequential approach
148(Cheung et al., 2010).
149To further improve the reliability of source reconstruction, we apply
150an fMRI prior on the spatial patterns of source activity. While the fMRI
151prior is used as a spatial constraint frequently in non-dynamic (or not
152temporally constrained) reconstruction methods (Dale et al., 2000;
153Sato et al., 2004; Daunizeau et al., 2007; Henson et al., 2010; Ou et al.,
1542010), it has yet to be applied in the above-mentioned dynamic (or
155state-space) methods. The fMRI prior in the proposedmethod is imple-
156mented similarly to the hierarchical variational Bayesian (hVB) method
157(Sato et al., 2004; Yoshioka et al., 2008). In forming this prior, the
158variance of the current noise (an input term driving the spatiotemporal
159dynamics of the MAR model) is weighted by the fMRI t-values. If all
160MAR coefficients are fixed at zero, this prior becomes identical to the
161fMRI prior proposed in Sato et al. (2004) and Yoshioka et al. (2008).
162The present study unifies theMARmodel, prior knowledge on the
163model parameters, and the measurement process of the current
164sources into a Bayesian framework. To improve stability of the estimat-
165ed source dynamics, this framework also includes a sparse prior on the
166MAR coefficients. All hidden parameters in the unified probabilistic
167model (such as source amplitudes and theMAR coefficients) are jointly
168estimated by a variational Bayesian algorithm (Attias, 1999; Sato,
1692001). The update rules are similar to those proposed in Fukushima
170et al. (2012), enabling inference of a high-dimensional dynamic model
171within a reasonable computation time.
172Our method estimates the effective connectivity in the source space
173without requiring the selection of regions of interest (ROIs). To this end,
174the source dynamics are formulated using the full MAR model, and the
175source amplitudes and interactions are estimated simultaneously over
176the whole brain. These extensions allow exploratory analysis of the in-
177tegration of brain functions, which complements the confirmatory ap-
178proach of dynamic causal modeling (DCM; Friston et al., 2003; David
179et al., 2006). In contrast to our method, DCM initially assigns a small
180number of ROIs as network nodes, and then examines the validity of
181the network solutions by post hoc comparison of the model evidence.
182The proposed method is quantitatively and qualitatively evaluated
183on simulation and experimental data, respectively. The results are com-
184pared with those of the hVB method, and of MNE and LCMV as bench-
185mark methods. First, we examine the identification accuracy of the
186MAR model, using data generated from the adopted dynamic source
187model.We then investigate the estimation performance undermore re-
188alistic conditions by mimicking stimulus-evoked responses by a net-
189work of neural mass models (Jansen and Rit, 1995; David and Friston,
1902003; David et al., 2005). Finally, we examine the physiological plausi-
191bility of the estimates by application to a publicly available experimen-
192tal dataset on face perception (Henson et al., 2011). Since the proposed
193method is a dynamic extension of the hVB method, we refer to it as the
194dynamic hVB method when comparing the methods.
195This paper is organized as follows. The Theory section explains the
196model formulation and the adopted estimation algorithm. Model con-
197struction from the data and schemes for evaluating the estimation per-
198formance are described in the Methods section. The next two sections
199present the settings and results of the evaluation studies. Next, we in-
200vestigatewhether the free energy can be used formodel comparison. Fi-
201nally, we summarize the significance of the present study and discuss
202the advantages and limitations of the proposed method.

203Theory

204Notation

205The following notations are used throughout this paper. P(x) de-
206notes the probability distributions of x and P(x | y) denotes the
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