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Sodium (23Na)MRI is a noninvasive tool to assess cell viability, which is linked to the total tissue sodium concen-
tration (TSC). However, due to low in vivo concentrations, 23NaMRI suffers from low signal-to-noise ratio (SNR)
and limited spatial resolution. As a result, image quality is compromised byGibbs ringing artifacts and partial vol-
ume effects. An iterative reconstruction algorithm that incorporates prior information from 1HMRI is developed
to reduce partial volumeeffects and to increase the SNR innon-protonMRI. Anatomicallyweighted second-order
total variation (AnaWeTV) is proposed as a constraint for compressed sensing reconstruction of 3D projection
reconstruction (3DPR) data. The method is evaluated in simulations and a MR measurement of a multiple scle-
rosis (MS) patient by comparing it to gridding and other reconstruction techniques. AnaWeTV increases resolu-
tion of known structures and reduces partial volume effects. In simulated MR brain data (nominal resolution
Δx3 = 3 × 3 × 3 mm3), the intensity error of four small MS lesions was reduced from (6.9 ± 3.8)% (gridding)
to (2.8 ± 1.4)% (AnaWeTV with T2-weighted reference images). Compared to gridding, a substantial SNR in-
crease of 130% was found in the white matter of the MS patient. The algorithm is robust against misalignment
of the prior information on the order of the 23Na image resolution. Features without prior information are still
reconstructed with high contrast. AnaWeTV allows a more precise quantification of TSC in structures with
prior knowledge. Thus, the AnaWeTV algorithm is in particular beneficial for the assessment of tissue structures
that are visible in both 23Na and 1H MRI.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Sodium (23Na)MRI provides a noninvasive measure of tissue viabil-
ity. Elevated levels of total sodium concentration (TSC) can be associat-
ed with pathological changes in tissue for a number of diseases such as
cancer (Nagel et al., 2011b; Ouwerkerk et al., 2003; Thulborn et al.,
1999), stroke (Hilal et al., 1983; Hussain et al., 2009; Jones et al., 2006;
Thulborn et al., 2005), muscular disease (Constantinides et al., 2000a;
Nagel et al., 2011a; Weber et al., 2011) or cartilage degeneration
(Schmitt et al., 2011; Wheaton et al., 2004). In multiple sclerosis (MS),
recent studies indicate elevated 23Na concentrations even in normal-
appearing white and gray matter of the brain (Inglese et al., 2010;
Maarouf et al., 2014; Paling et al., 2013; Zaaraoui et al., 2012). However,
the quantification of TSC is challenging. The low nuclear magnetic reso-
nance (NMR) sensitivity and low in vivo concentration of 23Na lead to
low signal-to-noise ratios (SNR), thus limiting the achievable spatial
resolution of the images. As a consequence, image quality is corrupted
by partial volume effects and Gibbs ringing artifacts. Furthermore, the
biexponential relaxation behavior of the slowly tumbling 23Na ions

has to be taken into account (Hubbard, 1970). Short T2⁎ relaxation
times result in a further broadening of the point spread function (PSF)
and require dedicated imaging sequences (Konstandin and Nagel,
2013a).

Since 2007, Compressed Sensing (CS) (Candès et al., 2006; Donoho,
2006) and related iterative reconstruction algorithms have experienced
an ever growing popularity for MRI reconstructions (Lustig et al., 2007).
Even though these techniques are widely applied in proton imaging,
they are still rarely used in non-proton MRI (Ajraoui et al., 2010; Behl
et al., 2014; Hu et al., 2008; Kampf et al., 2010; Madelin et al., 2011).
While these approaches exploit the sparsity of images in some trans-
form domain, the incorporation of prior anatomical knowledge in the
reconstruction provides further opportunities to improve image quality.
Even the use of a support region that matches the object shape as the
most basic anatomical information can improve image quality
(Ajraoui et al., 2012; Gnahm et al., 2014). Images of different nuclei
are generally highly correlated: in the case of 23Na MRI, anatomical
structures such as the cerebrospinal fluid (CSF) are well visible,
matching well with 1H MRI.

Proton images are available with excellent SNR and high resolu-
tion within short measurement times. Algorithms that incorporate
prior anatomical information from proton MRI for resolution en-
hancement have been used well before the onset of CS, mostly in
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MR spectroscopic imaging (Eslami and Jacob, 2010; Haldar et al.,
2006; Hu et al., 1988; Liang and Lauterbur, 1991; Plevritis and
Macovski, 1995). Constantinides et al. (2000b) proposed the first al-
gorithm incorporating anatomical information for 23Na MRI. Common
to all these methods is the need for segmentation of the proton refer-
ence image before reconstruction. Itwould be desirable to develop algo-
rithms that do not rely on segmentation, which is an additional source
of error. Haldar et al. (2008) proposed to use anatomical weighting
factorswith quadratic regularization to reconstruct low-SNRproton im-
ages. However, quadratic regularization does not harness image sparsi-
ty in the context of CS. Here, we propose an anatomically weighted
second-order total variation (AnaWeTV) constraint that advances the
idea of anatomical weighting factors to fulfill the requirements of CS.
Prior information is obtained from registered proton images with
higher resolution. The performance of the algorithm is demonstrated
in data simulations and for in vivo 23Na MRI of a MS patient.

Methods

Image reconstruction

The idea of anatomical weighting as suggested for quadratic regular-
ization (Haldar et al., 2008) is refined to meet the requirement of CS in
terms of l1-norm minimization. An anatomically weighted second-
order total variation (AnaWeTV) is proposed:
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where x is the image vector, Dα
(1) denotes the first-order derivative

computing the finite differences in dimension α, and Dα
(2) = Dα

(1)TDα
(1)

is the second-order derivative. The relative weighting of the first- and
second-order derivatives is chosen by λ = 0.77 (Block et al., 2007;
Geman and Yang, 1995).Wα is a diagonal matrix containing anatomical
weighting factors taking values between 0 and 1. For a weighting factor
of 1, Eq. (1) becomes the normal second-order total variation (TV2)
(Block et al., 2007; Geman and Yang, 1995). For a small weighting factor
(Wα)ii, intensity changes between voxel i and its neighboring voxels in
direction α are less penalized. Thus, intensity changes in the recon-
structed image are promoted at positions of known tissue boundaries.

The anatomical weighting factors are calculated directly from a reg-
istered high-SNR, high-resolution 1H MR reference image. The confi-
dence cα of a tissue boundary is defined as the first derivative of the
reference image r that has been normalized to its maximum value:
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Wα is then calculated from the inverse wα of the confidence cα,
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The parameterwmax is used to control the amount of included prior
information. For small values of wmax, only the strongest signal varia-
tions in the reference contribute.

The image is reconstructed by minimizing the objective function

f xð Þ ¼ 1
2

Ax−yk k22 þ
X
i

τiRi; ð5Þ

where A is the systemmatrix, which is composed of a Fourier transforma-
tion followed by Kaiser-Bessel gridding (Jackson et al., 1991) to the k-
space trajectory. x is the image vector and y is the vector containingmea-
sured data. Ri are regularization terms with a constant weighting τi.
AnaWeTV is always used in combinationwith a regularization of the sup-
port region, which is derived as a binary mask (BM) from the reference
proton image (Gnahm et al., 2014). For simplicity, reconstructions with
combined BM- and AnaWeTV-regularization will be denoted with
AnaWeTV instead of AnaWeTV&BM throughout this paper. The objective
function is minimized using a conjugate gradient algorithm (Zhang et al.,
2006). The code was implemented in C++ using the FFTW3 library
(Frigo and Johnson, 2005). The algorithm is stopped if the criterion
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is fulfilled ten times in a row.
AnaWeTV was compared to BM&TV2 as well as gridding. In 23Na

MRI, it is common to apply a Hamming filter (Hamming, 1989;
Konstandin and Nagel, 2013b; Stobbe and Beaulieu, 2008) to increase
SNR and to reduce Gibbs ringing artifacts. Therefore, a Hammingfiltered
gridding reconstruction was performed as well. Additionally, AnaWeTV
was compared to the originally proposed method of anatomically
weighted quadratic regularization (AnaWeQR) (Haldar et al., 2008).
Weighting factors in the iterative reconstruction were optimized as de-
tailed in (Gnahm et al., 2014).

Simulations

Radial k-space data were generated based on simulated T2-
weighted Spin Echo (T2w SE) 1H MR brain images from the
BrainWeb database (Cocosco et al., 1997; Kwan et al., 1996) as de-
scribed in Gnahm et al. (2014), since this contrast is similar to a
23Na MR image. Datasets for a healthy brain as well as for the same
brain with artificially inserted MS lesions were simulated with a nominal
resolution Δx3 = 3 × 3 × 3 mm3 and 5000 projections, corresponding to
25% of the required Nyquist samples. The MS lesions were simulated to
have 89% higher signal intensity than the surrounding white matter
(WM). Another dataset was simulated for the healthy brain with re-
duced nominal resolution Δx3 = 6 × 6 × 6 mm3 and 5000 projections
to fulfill the Nyquist criterion. Synthetic complex Gaussian noise was
added to all datasets. The gridding reconstruction of the fully sampled
dataset with Δx3 = 1.5 × 1.5 × 1.5 mm3 served as ground truth.
AnaWeTV reconstructions were performed with weighting factors
from three reference images with different contrasts: T1-weighted
Magnetization Prepared Rapid Gradient Echo (T1w MPRAGE), T2-
weighted Fluid Attenuated Inversion Recovery (T2w FLAIR) and the
T2w SE. The T2w FLAIR and T1w MPRAGE contrast were obtained as
BrainWeb custom simulations (Kwan et al., 1996). The T2w SE was
identical to the ground truth image and therefore contained the same
contrast as the simulated radial datasets. For the AnaWeQR reconstruc-
tion, the T2w SE image was used as reference.

Iterative reconstructions of the high-resolution (Δx3=3×3×3mm3)
dataset were performed with the following weighting factors: τBM = 10,
τTV2 = 2.5 × 10−4 (BM&TV2), τAnaWeQR = 1 (AnaWeQR), τBM = 10,
τAnaWeTV = 2.5 × 10−4 (AnaWeTV, T1w MPRAGE reference), τBM = 0,
τAnaWeTV = 5 × 10−4 (AnaWeTV, T2w FLAIR reference) and τBM = 7,
τAnaWeTV = 7.5 × 10−4 (AnaWeTV, T2w SE reference). For the low-
resolution (Δx3 = 6 × 6 × 6 mm3) dataset, τBM = 4, τTV2 = 1 × 10−3

(BM&TV2) and τBM=0.7, τAnaWeTV=2.5 × 10−3 (AnaWeTV, T2w SE ref-
erence) were used.

The influence of registration errors of the prior informationwas test-
ed on the 3 × 3 × 3mm3 dataset bymisaligning the T2w SE reference in
the anterior-posterior direction by 1.5, 3, and 4.5 mm. Furthermore, the
reconstruction of features without prior information as well as the
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