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Functional connectivity (FC) sheds light on the interactions between different brain regions. Besides basic re-
search, it is clinically relevant for applications in Alzheimer's disease, schizophrenia, presurgical planning, epilep-
sy, and traumatic brain injury. Simulations of whole-brain mean-field computational models with realistic
connectivity determined by tractography studies enable us to reproduce with accuracy aspects of average FC in
the resting state.Most computational studies, however, did not address the prominent non-stationarity in resting
state FC, which may result in large intra- and inter-subject variability and thus preclude an accurate individual
predictability. Here we show that this non-stationarity reveals a rich structure, characterized by rapid transitions
switching between a few discrete FC states. We also show that computational models optimized to fit time-
averaged FC do not reproduce these spontaneous state transitions and, thus, are not qualitatively superior to sim-
plified linear stochastic models, which account for the effects of structure alone. We then demonstrate that a
slight enhancement of the non-linearity of the network nodes is sufficient to broaden the repertoire of possible
network behaviors, leading to modes of fluctuations, reminiscent of some of the most frequently observed Rest-
ing State Networks. Because of the noise-driven exploration of this repertoire, the dynamics of FC qualitatively
change now and display non-stationary switching similar to empirical resting state recordings (Functional Con-
nectivity Dynamics (FCD)). Thus FCD bear promise to serve as a better biomarker of resting state neural activity
and of its pathologic alterations.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).

Introduction

The complexity of human cognition is echoed in the dynamic organi-
zation of its accompanying brain signals. Even at rest, the brain does not
remain in a state of equilibrium, but reveals complex spontaneous dy-
namics with intermittent spatiotemporal fluctuation patterns. In fact,
functional magnetic resonance imaging (fMRI) studies have demon-
strated that in the absence of an overt task, fluctuations in the blood
oxygenation-level dependent (BOLD) fMRI signals correlate across

functionally related brain regions in task conditions (Gusnard and
Raichle, 2001; Laird et al., 2011; Raichle and Mintun, 2006). Further
studies identified several intrinsic resting state networks (RSNs), which
are found across subjects (Damoiseaux and Greicius, 2009), correlate
with neuroelectric activity (Britz et al., 2010; Mantini et al., 2007) and
are shaped, though not fully determined, by structural connectivity
(SC) (Damoiseaux and Greicius, 2009).

Modeling studies (Deco et al., 2009; Deco et al. 2011; Ghosh et al.,
2008; Honey et al., 2007) have demonstrated the importance of the in-
terplay between anatomical structure, local neural dynamics and noise
in the emergence of resting-state inter-regional correlations described
by functional connectivity (FC) (Friston, 2011). Many of these models
(Deco and Jirsa, 2012; Deco et al., 2013a; Ghosh et al., 2008) operate
at a working point close to the critical edge of instability (Deco et al.,
2013b). They are easily implementedwithin dedicated simulation envi-
ronments such as The Virtual Brain (Sanz Leon et al., 2013) and are ca-
pable of reproducing time-averaged resting state FC. It has been pointed
out, however, that purely statistical models, which predict FC on the
basis of local and global descriptors of SC-weighted networks alone,
are able to achieve a comparable or even closer fit (Goñi et al., 2014;
Messé et al., 2014). This means that previous dynamic models went
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scarcely beyond the exploration of how the SC skeleton expresses itself
in spontaneous neural activity.

One drawback of all of these studies is that they assume —often
implicitly— that FC is spatiotemporally stationary. In doing so, they ig-
nore the profound non-stationarity of resting state activity (Hutchison
et al., 2013). This activity possibly mirrors free thought modalities
(Doucet et al., 2012) associated to neural activity events localized in
space and time or to faster electrophysiological processes (Liu and
Duyn, 2013),which are necessarily overlookedwhen averaging correla-
tions throughout long recording periods. Thusmodels able to go beyond
themere replication of the constraints exerted by SC on FC are required
to account for the time-dependence of FC.

Through simulations of computational models in a subcritical re-
gime of activity, we show how the noise-driven exploration of a broad
landscape of possible dynamical behaviors results in rapid switching
between a discrete number of multistable FC states. This switching in
turn gives rise to spatial correlation patterns reminiscent of known
RSNs. Hence our approach offers a plausible interpretational framework
for the non-stationarity of FC. In short, we propose that resting state
Functional Connectivity Dynamics (FCD) are a manifestation of the
self-organized activity of cortical networks, in which noise-driven fluc-
tuations far from equilibrium lead to the stochastic sampling of a rich
repertoire of characteristic system's trajectories.

Materials and methods

All empirical data used herein stem from awell-investigated data set
as presented in Hagmann et al. (2008), comprising structural data from
five healthy subjects and its associated time-series of resting state BOLD
signals. In the following we organized the Materials and Methods into
three subsections: on Connectivity,MathematicalModels, and Analyses.

Connectivity

Structural connectivity
Structural Connectivity is the set of anatomical connections between

brain regions. Here we used the SC matrix of 66 regions derived from
Diffusion Spectrum Imaging (DSI) as previously published and detailed
in Hagmann et al. (2008) with the modifications introduced by Cabral
et al. (2011), which made this matrix slightly asymmetrical. Connec-
tions in this SC matrix were defined within a standard parcellation
scheme (Desikan et al., 2006) and averaged over five healthy subjects.
Table S1 provides the names and abbreviations of these Regions Of
Interest (ROIs). We analyzed the SC matrix using graph theoretical
measures (Rubinov and Sporns, 2010), to assess correspondences with
neural activity patterns. In particular, we calculated the in-strength of
each network node, that is the sum of the weights of the incoming
connections (the sum of all the entries in each row of the SCmatrix) to de-
termine the local topology of individual brain regions. A second approach
called s-core decomposition (described in Hagmann et al. (2008)) provided
insight into more global correlations between the in-strength of different
nodes in the network. The s-core is a connected subnetwork in which
nodes have an in-strength greater than or equal to s. We varied the value
of s in the range [0, ŝ],where ŝ is themaximumvalue of all entries of the SC.

Functional connectivity
Functional Connectivity (FC) describes the connectedness of two

brain regions by means of the covariance between their time series.
From the BOLD signals, we extracted a FC matrix by calculating the
Pearson (zero-lag) correlation between the BOLD signals of any two
brain regions. In a static FC matrix, a single correlation value was com-
puted for each pair of regions across the entire time-series of BOLD
signals a 20-min session per subject. Furthermore, we estimated the
time-dependent FC matrices. Each full-length BOLD signal of 20 min is
split up into 570 segments of 60 seconds, overlapping by 58 seconds.
For each segment, centered at time t, we calculated a separate FCmatrix,

FC(t), thereby generating a stream of FC(t) matrices from each session.
Similarities between different FC or FC(t) matrices were analyzed by
plotting scatter plots of the upper triangular parts of two matrices and
evaluating the Pearson correlation coefficient of these scatter plots.
The static and time-dependent FC analysis was performed for the
recordings of each subject as well as for each computational model
based on time-series of 20 min of simulated BOLD signals (see below
for details). The statistical significance of the differences between
inter-FC correlation values (e.g. the correlations between empirical
and simulated static FCmatrices at the best-fit point of differentmodels,
defined below in the Results section) was tested using a resampling
approach (1000 bootstrap replicas of each inter-matrix correlation, ob-
tained by direct resampling with replacement of FC matrix entries).

Functional connectivity dynamics
To capture the spatiotemporal organization of functional connectiv-

ity, we derived a novel metric by representing the similarities between
FC(t)matrices at different times twithin a singlematrix.We refer to this
matrix as the FC Dynamics (FCD)matrix. The (t1, t2) entry of the FCDma-
trix provided the Pearson correlation between the upper triangular
parts of the two matrices FC(t1) and FC(t2). Blocks of elevated inter-
FC(t) correlations organized around the FCD matrix diagonal denoted
epochs of stable FC configurations. The boundaries between such blocks
were determined by unsupervised clustering of the FC(t) (with the fea-
tures for clustering provided by their upper triangular parts), using the
K-means method (Hartigan and Wong, 1979). Selecting K = 4 was
sufficient for capturing all the visible blocks and thus thereby separating
prominent epochs of stability. Then we operationally defined a FC state
as a cluster of similar FC(t) matrices, typified by the cluster-average FC
matrix.

Please note that our FCD analysis is similar to the meta-recurrence
plots first described in (Manuca and Savit, 1996), constructed by com-
paring different chunks of the signals themselves, rather than their cor-
relation matrices. We also computed meta-recurrence plots of activity,
based on vectors of BOLD signals averaged for the different regions
over the same time-windows used for a parallel FCD analysis. Please
note that we retained the BOLD baselines in the signals and computed
the cross-correlation (not the cross-covariance) between spatial pat-
terns of window-averaged activity.

Mathematical models

Here we present three computational models of resting state
network dynamics: a mean field model (MFM), previously introduced
in Deco et al. (2013a); a simple linear stochastic model (LSM), already
considered in (Galan, 2008; Goñi et al., 2014; Messé et al., 2014); and,
finally, a minimally modified variant of the MFM, in which local non-
linearities are enhanced to introduce bi-stability between a high and
low firing rate states (eMFM) at the level of each single brain region.

Dynamical mean-field models (MFM and eMFM)
We used a modified version of the mean-field model designed by

Wong and Wang (2006), to describe the mean neural activity for each
brain region, following the reduction performed in Deco et al. (2013a).
The resulting neural mass equations are given by:

dSi
dt

¼ −Si
τS

þ 1−Sið ÞγRi þ σηi tð Þ ð1Þ

Ri ¼
axi−b

1−exp −d axi−bð Þ½ � ð2Þ

xi ¼ wJNSi þ JNG
X

j

Ci jS j þ I0 ð3Þ
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