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We introduce matched-filter fMRI, which improves BOLD (blood oxygen level dependent) sensitivity by variable-
density image acquisition tailored to subsequent image smoothing. Image smoothing is an established post-
processing technique used in the vast majority of fMRI studies. Here we show that the signal-to-noise ratio of
the resulting smoothed data can be substantially increased by acquisition weighting with a weighting function
that matches the k-space filter imposed by the smoothing operation. We derive the theoretical SNR advantage
of this strategy and propose a practical implementation of 2D echo-planar acquisition matched to common
Gaussian smoothing. To reliably perform the involved variable-speed trajectories, concurrent magnetic field
monitoring with NMR probes is used. Using this technique, phantom and in vivo measurements confirm reliable
SNR improvement in the order of 30% in a “resting-state” condition and prove robust in different regimes of
physiological noise. Furthermore, a preliminary task-based visual fMRI experiment equally suggests a consistent
BOLD sensitivity increase in terms of statistical sensitivity (average t-value increase of about 35%). In summary,
our study suggests that matched-filter acquisition is an effective means of improving BOLD SNR in studies that

rely on image smoothing at the post-processing level.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Spatial smoothing of imaging volumes is ubiquitous in fMRI (Carp,
2012; Poldrack et al., 2008). Its routine use before statistical analysis
aims at improving the sensitivity and interpretability of blood oxygen
level dependent (BOLD) contrast in three ways, i.e., from the perspec-
tive of (1) signal processing, (2) statistical inference at the single-
subject level and (3) group level inference (Friston, 2007).

Firstly, with respect to the signal processing perspective, smoothing
the data with a filter that resembles the spatially extended hemody-
namic response is considered optimal to detect activation of this partic-
ular shape and scale, according to the matched-filter theorem (Worsley
et al., 19964, b). Secondly, regarding single-subject inference, image
smoothing facilitates the application of multiple comparison correction
using random field theory (Worsley et al., 1996a, b) since it ensures
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spatial smoothness of the residual error distribution. Thirdly, at the
group level, spatial smoothing helps to absorb anatomical variability
between subjects.

Image smoothing is commonly performed with a filtering operation
in k-space that attenuates signal content at high spatial frequencies. In
doing so it alters the effective point spread function (PSF) such as to
broaden its main peak and suppress far-range contamination. However,
importantly, variable k-space attenuation not only affects the PSF but
also the propagation of noise from raw data into smoothed images.
The noise content of the raw data undergoes the same k-space
weighting such that the relative impact of noise increases towards the
center of k-space. As a consequence, to maximize the SNR of the
smoothed data, the raw data should be acquired with variable sensitiv-
ity by corresponding k-space weighting at the acquisition level. As will
be detailed in the theory part, optimal net SNR is achieved by acquisition
weighting that exactly matches the eventual smoothing filter. The un-
derlying mathematics correspond closely to the matched-filter rationale
(North, 1963) of the smoothing operation. It is important, however, to
distinguish the different filter-matching rationales. Aiming to match
the hemodynamic response by smoothing is common practice today
and serves for the purposes summarized initially. The utility of also
matching data acquisition is a consequence of the smoothing strategy
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and serves exclusively for SNR optimization given a chosen smoothing
kernel. Importantly, through appropriate image reconstruction includ-
ing density correction, the matched-filter acquisition does not change
the PSF and thus allows for image post-processing that is identical to
standard acquisition.

Acquisition weighting has previously been used to improve the sen-
sitivity of MR spectroscopic imaging and non-proton MRI, summarized
under the theme of density-weighted phase encoding (Greiser and von
Kienlin, 2003; Greiser et al., 2005; Stobbe and Beaulieu, 2008). In
this work, we introduce matched-filter acquisition for fMRI with
single-shot echo-planar readouts, which is challenging in that it cannot
be accomplished merely by altered phase encoding, but requires 2D
trajectory design with complex modulation of k-space velocity. Such
trajectories are particularly susceptible to common imperfections of
gradient systems such as bandwidth limitations and eddy currents. To
gauge and address this issue, we incorporate concurrent magnetic
field monitoring (Barmet et al., 2008, 2009, 2010) with NMR probes
(Barmet et al., 2010; De Zanche et al., 2008), which permits accounting
for imperfections in magnetic field evolution at the image reconstruc-
tion stage.

The SNR benefit expected from filter matching relies on the incoher-
ence of noise. In particular, the exact form of the matched-filter acquisi-
tion rule proposed here refers to the assumption of independent and
identically distributed white noise. Thermal noise, which is prevalent
in MR, exhibits this property (Johnson, 1928; Nyquist, 1928). For this
noise regime, we show analytically that the distribution of acquisition
time should indeed exhibit the same weighting in k-space as the target
PSF, to achieve maximum SNR. However, BOLD fMRI is also subject to
noise related to physiological processes with non-white statistics
(Bianciardi et al., 2009; Kriiger and Glover, 2001), including inherent
neurophysiological fluctuations as well as respiratory and cardiovascu-
lar dynamics (Birn et al., 2008; Chang et al., 2009; Dagli et al., 1999;
Glover et al., 2000; Shmueli et al., 2007). Therefore, the experimental
validation of matched-filter fMRI in this work comprises signal-to-
fluctuation-noise ratio (SFNR) measurements of phantom and in vivo
time series, in which we vary the degree of signal-mediated fluctuations
and evaluate their influence on the observed SFNR gain. Finally, we
perform a proof-of-principle experiment showing the feasibility of
matched-filter acquisition also for task-based fMRI. Using a visual
paradigm in a preliminary group of four subjects, robust t-value
increases are reported over standard EPI acquisition.

Theory and methods
Theory: Matched-density acquisition for image post-processing filters

In the following section, we establish the relationship between
variable acquisition speed in k-space, the point-spread function (PSF)
and signal-to-noise ratio (SNR) within an MR image. This is contrasted
to shaping the PSF by retrospective smoothing only.

To estimate SNR, we consider the different propagation of signal and
noise in both stages, focusing on the total thermal noise contribution
similar to Pipe and Duerk (1995) and Stobbe and Beaulieu (2008), but
treating all quantities in a continuous fashion, which then leads to a
variational optimization of SNR.

Accrual of signal and noise in a given k-space region depends on how
much acquisition time is spent in that region. If local acquisition time is
distributed non-uniformly, it becomes dependent on the k-space posi-
tion vector k = (k,kyk,). Hence, we denote the resulting distribution
of acquisition time as acquisition density dacq(k) Upon gridding
reconstruction, d,.q becomes effectively smooth on the scale of the
Nyquist sampling interval and represents the local density of trajectory
segments and their velocity.

Signal accrues coherently over time and thus linearly with d,cq(k).
Thermal noise, on the other hand, accrues incoherently because it is un-
correlated due to being identically, independently normally distributed

(Johnson, 1928; Nyquist, 1928). Hence, the variance of the thermal
noise increases linearly with local acquisition density:

O eq (k) o< dyoq (). 1)

Let us now consider smoothing during post-processing which is per-
formed to achieve a target PSF. As the combined action of smoothing
and acquisition weighting in k-space should yield the target density,
we obtain a defining equation for the smoothing filter:
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With diarger and dsmoorn being the Fourier transform of the PSF and
smoothing kernel, respectively.

We now investigate the action of this post-processing filter on the
acquired k-space data, which is already a superposition of signal and
noise. The application of dsmneom(k) is @ mere re-weighting of these
data. Thus, the signal scales linearly with this density as in the case of
acquisition weighting. The noise amplitude, however, is now also pro-
portionally scaled with this density, inducing a quadratic dependency
of the noise variance on dgqe0th in the final, post-processed data,
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where equality and proportionality arise from Egs. (1) and (2),
respectively.

This equation illustrates that the acquisition density is an additional
degree of freedom for an MR experiment with a given target PSF,
because the target PSF can always be achieved retrospectively by
smoothing with an appropriate image filter Ksyooth. The choice of the
acquisition density, on the other hand, then determines the noise land-
scape in k-space, 0%sn, for the final, reconstructed image, as described
in Eq. (3).

Given a specific target PSF, an immediate application of Eq. (3) is to
find the acquisition density that maximizes SNR in the image. As long as
Nyquist sampling is ensured, the signal level is independent of d,cq,
because it is determined by the target PSF (which is the same for all
acquisition densities). Thus, to maximize SNR, it suffices to minimize
the noise variance in each image voxel. As we reconstruct an image
from the acquired k-space data of an individual coil through Fourier
transformation and the thermal noise accrued in k-space is uncorrelat-
ed, the noise landscape in the conjugate image space will be flat accord-
ing to the Wiener-Khinchin theorem (Weisstein, 2006b), rendering all
voxel noise variances in the image equal. Minimizing the noise variance
per voxel is therefore equivalent to minimizing the total noise power in
the image which, in turn, is equivalent to the noise power in k-space due
to Parseval’s theorem (Weisstein, 2006a).

Hence, maximizing the SNR per voxel amounts to a constrained
minimization of the noise power in the covered k-space volume V
which we define as
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The optimization constraint is given by a constant total acquisition
time T,cq, such that the full optimization problem incorporating relation
(3) reads
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