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We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping soft-
ware (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, mul-
tiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface
mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors
by restricting the dipole source space to a segmented graymatter layer and using a region growing approach. This
extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more real-
istic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard
3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images
in 12 subjects. Based on the segmented graymatter for each of the subjects, cortical regionswere created and in-
troduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp–
skull–brain head models and extended 4-layered head models including CSF. We compared these models with
the current implementation by assessing the free energy corresponding with each of the reconstructions using
Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach
compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest
evidencewas found in favor of the volumetricMSP reconstructions based on the extended headmodels including
CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as
source priors is a useful complement to the present implementation as it allows to introducemore complex head
models and volumetric source priors in future studies.

© 2014 Elsevier Inc. All rights reserved.

Introduction

In this notewe present a new application of hierarchical or empirical
Bayes for distributed EEG source reconstruction. We depart from the
parametric empirical Bayesian (PEB) framework used in the Statistical
Parametric Mapping software (SPM) package (Wellcome Trust Centre

for Neuroimaging, London, UK). Within the framework, the multiple
sparse priors (MSP) algorithm is the state-of-the-art inverse technique.
Depending on the EEG data, the algorithm allows the automatic selec-
tion of multiple cortical sources with compact spatial support that are
specified in terms of empirical priors (Friston et al., 2008).

In the present implementation of the MSP algorithm, multiple
cortical patches of sources are constructed based on a source space of
dipoles constrained to a cortical surface mesh (Mattout et al., 2007)
and the field propagation of the surface patches is calculated based on
a 3-layered scalp–skull–brain head model (Henson et al., 2009).
Constraining the dipolar sources to a cortical mesh does not allow the
reconstruction of brain activity besides the cortical surface. Moreover,
it is not straightforward to use more complex head models that extend
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the 3-layered model with extra layers such as cerebrospinal fluid (CSF).
Because the dipoles are located on the boundary between the CSF and
the brain, they will either be located inside the CSF or brain compart-
mentwhich does not satisfy the restrictions to the source space of com-
monly used numerical methods, such as the boundary element method
(Mosher et al., 1999), finite difference method (Hallez et al., 2005;
Vanrumste et al., 2001) or finite element method (Wolters et al.,
2002), to properly calculate the dipole field propagation (Stenroos and
Nenonen, 2012; Strobbe et al., 2014).

In thiswork,we propose a technique to construct volumetric regions
based on a dipole source space restricted to gray matter, segmented
from an anatomical MR image, and using a region growing technique.
This approach allows the inclusion of more prior information about
the anatomy and shape of the sources and does not require the extrac-
tion of the cortical surface. It opens up the possibility to use theMSP al-
gorithm to reconstruct brain structures besides the cortical surface and
facilitates the use of more realistic volumetric head models including
cerebrospinal fluid (CSF) compared to the currently used 3-layered
scalp–skull–brain head models.

To illustrate the volumetric MSP approach, we used realistic ERP
datasets and anatomical MR images in 12 subjects. Based on the seg-
mented graymatter for each of the subjects, cortical regionswere creat-
ed and introduced as source priors for MSP-inversion assuming two
types of head models. For every subject, a 3-layered volumetric subject
specific head model was constructed. Also extended 4-layered head
models including CSF were built to investigate the influence of increas-
ing the head model complexity. We compared with the present imple-
mentation by assessing the free energy corresponding with the
reconstructions using Bayesian model selection for group studies
(Rigoux et al., 2013; Stephan et al., 2009). The reconstructed activity
was also compared with the results of previous studies using similar
ERP datasets (Mijović et al., 2012).

In the first section of this paper, we will briefly present the PEB
framework and the MSP algorithm. We will explain how we extended
the currently used approach based on cortical patches to volumetric re-
gions and subsequently describe how the different headmodels used in
this study were constructed. Next, we explain how we compared the
models using Bayesian model selection and verified the reconstructed
activity. We conclude with a discussion of the benefits and potential of
using volumetric source priors.

Methods

Distributed EEG source reconstruction

Assume that we represent the EEG measurements as a multivariate
linear model involving a distributed source model with fixed positions
and orientations (Dale and Sereno, 1992):

V ¼ LJ þ ϵ ð1Þ

where V∈ℝNc�Nt is the EEG dataset of Nc channels and Nt time samples,
J∈ℝNd�Nt is the amplitude of Nd current dipoles with fixed orientations,
ϵ∈ℝNc�Nt is the zeromean Gaussian noise and L∈ℝNc�Nd is the lead field
matrix linking the source amplitudes in J to the electrical scalp poten-
tials in V. The lead field matrix represents the forward model and em-
bodies assumptions about the head model and the forward modeling
technique that is used.

Because of the ill-posed nature of the EEG source reconstruction
problem (Baillet and Garnero, 1997), we need to add prior information
to find a unique solution. There are different techniques that allow this,
such as the weighted minimum norm (WMN) solution (Hämäläinen
and Ilmoniemi, 1994):

Ĵ ¼ min
J

Cϵ
−1=2 LJ−Vð Þ

��� ���2 þ λ WJk k2
� �

: ð2Þ

This approach implicates minimizing an energy function, with Cϵ
as the prior covariance of the sensor noise, W as the weighting matrix
including prior information of the source activity and with λ a
hyperparameter that tunes the relative importance of the accuracy of

the model Cϵ
−1=2 LJ−Vð Þ

��� ���2, and the regularization term ‖WJ‖2. Given

that (λWTW)−1 = CJ, with CJ as the prior covariance of the sources
(i.e., it embodies our assumptions about the interaction among the
sources), the solution of this equation becomes (Grech et al., 2008;
Phillips et al., 2005):

Ĵ ¼ C J

� �
LT L C J

� �−1
LT þ Cϵ

� �−1
V : ð3Þ

It follows that the solution of Eq. (3) directly depends on Cϵ and CJ.

Parametric empirical Bayes: multiple priors

Eq. (1) can also be expressed in the context of a two-level hierarchi-
cal parametric empirical Bayesian (PEB) model:

V ¼ LJ þ ϵ1
J ¼ ϵ2

ð4Þ

with ϵ1 and n2 assumed to follow a Gaussian distribution with zero
mean: ϵ1 ∼ N(0, Cϵ) and ϵ2 ∼ N(0, CJ). The covariance matrices Ce and
CJ can be modeled as a linear combination of covariance components
(Phillips et al., 2007):

Cϵ ¼ λ 1ð Þ
1 Q 1ð Þ

1 þ λ 1ð Þ
2 Q 1ð Þ

2 þ…

C J ¼ λ 2ð Þ
1 Q 2ð Þ

1 þ λ 2ð Þ
2 Q 2ð Þ

2 þ…
ð5Þ

with λ1(1), λ2(1),… and λ1(2), λ2(2),…, the hyperparameters that balance the
various covariance components either at the first (sensor) or second
(source) level (Phillips et al., 2005).

In the SPM–PEB framework, the hyperparameters are estimated
using a variational Bayesian estimation scheme by optimizing the free
energy (Friston et al., 2007) given the covariance components. As
such, Cϵ(μ1) and CJ(μ2), with μ1 = {λi

(1)} with i = 1, 2, ….and μ2 =
{λi(2)} with i=1, 2,…, can be calculated. It follows that the expectation
of the source intensities J given V is equal to:

E J½ � ¼ C J μ2ð ÞLT LC J μ2ð ÞLT þ Cϵ μ1ð Þ
h i−1

V ð6Þ

with E[J] the expected value of J. Note that we obtain the same solution
as in Eq. (3), with the difference that we can introduce multiple con-
straints or priors in the form of covariance components.

Multiple sparse priors algorithm

In the absence of prior information, we assume the same amount of
prior variance on all sensors: Cϵ ¼ λ 1ð Þ

1 INc , where INc∈ℝNc�Nc is an iden-
tity matrix, and λ1(1) is the sensor noise variance.

In themultiple sparse priors (MSP) algorithm (Friston et al., 2008), a
weighted sum of Np predefined source covariance candidate matrices is
used, where each covariance matrix represents a potential activated
area of the cortex:

C J ¼
XNp

i¼1

λ 2ð Þ
i

� �
Q 2ð Þ

i : ð7Þ

The hyperparameters λ 2ð Þ
1 ;…;λ 2ð Þ

Np

n o
weight these covariance com-

ponents and control the power allocated to each of them. Note that
these components may embody different types of informative priors,
e.g., different smoothing functions, medical knowledge, and fMRI priors
(Henson et al., 2011).
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