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We present a novel method for controlling the effects of group differences in motion on functional connectivity
studies. Resting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool that allows for the as-
sessment of whole-brain functional organization across a wide range of clinical populations. However, as
highlighted by recent studies, many measures commonly used in rs-fMRI are highly correlated with subject
head movement. A source of this problem is that motion itself, and motion correction algorithms, lead to spatial
smoothing, which is then variable across the brain and across subjects or groups dependent upon the amount of
motion present during scanning. Studies aimed at elucidating differences between populations that have differ-
ent head-motion characteristics (e.g., patients oftenmovemore in the scanner than healthy control subjects) are
significantly confounded by these effects. In this work, we propose a solution to this problem, uniform smooth-
ing, which ensures that all subject images in a study have equal effective spatial resolution.We establish that dif-
ferences in the intrinsic smoothness of images across a group can confound connectivity results and link these
differences in smoothness tomotion.We demonstrate that eliminating these smoothness differences via our uni-
form smoothing solution is successful in reducing confounds related to the differences in head motion between
subjects.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) is an
emerging tool that allows for the analysis of whole-brain functional
organization without a priori knowledge (Smith, 2012). By measuring
the functional connectivity of brain regions via correlation of spontane-
ous fluctuations in the blood-oxygen-level dependent (BOLD) signal
(Biswal et al., 1995, 2010; Lowe et al., 1998), rs-fMRI can easily be ap-
plied clinically as it can be task- and performance-free. This technique
has great clinical potential in a range of neurological diseases including
those populations for whom the burden of complex cognitive tasks is
greatest. While rs-fMRI is maturing as a modality, a recent set of papers
have shown that most functional connectivity measures are highly
correlated with subject movement (Power et al., 2012; Satterthwaite
et al., 2012, 2013; Van Dijk et al., 2012; Yan et al., 2013). In many
cases, comparisons between control groups and clinical populations,
where rs-fMRImay have themost potential, are confounded by system-
atic differences in headmovement between the groups. The interaction

between study group, motion, and functional connectivity is currently a
major obstacle in the development and clinical application of rs-fMRI.

Current approaches aimed at reducing the impact of motion on func-
tional connectivity have focused generally on controlling for subject head
motion. Controlling formotion is achievedby removinghigh-motiondata
(Power et al., 2012), by regressingmotion at a group level (Satterthwaite
et al., 2012), by matching data sets for motion (Tian et al., 2006), or by
regressing higher motion terms (Satterthwaite et al., 2013). However,
these approaches do not entirely eliminate motion confounds (Yan
et al., 2013). One potential issue with removing time points or regressing
several motion terms is that potentially real changes in connectivity
associated with motion can be removed along with artifacts (Scheinost
et al., 2013). Other approaches that do not rely explicitly on controlling
formotion, such as removal of global signal and additional normalization,
have been suggested as potential solutions to motion confounds (Power
et al., 2014; Yan et al., 2013).

The primary contribution of this paper is to introduce the use of
iterative smoothing as a method to reduce motion confounds of the
form that arise when significant differences in motion are present
between experimental groups. This approach works without needing
to explicitly control formotion. First, we establish that an image's intrin-
sic smoothness is correlated with both region-of-interest (ROI)-based
and voxel-based measures of connectivity and show that differences
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in smoothness across a sample can confound connectivity. Next, we
show that subject headmotion is correlated with this intrinsic smooth-
ness suggesting that increased image smoothness is causedbyheadmo-
tion and motion correction. Finally, we demonstrate that eliminating
these differences in image smoothness, by smoothing all images to a
uniform level across the sample, is an effective way to reduce motion-
related confounds in functional connectivity studies. We demonstrate
that our method has at least equivalent performance compared to
other current strategies focused on minimizing motion confounds,
while not relying on excluding high motion frames from the data.

Methods

Subjects

We selected the Oulu data set from the 1000 functional connectivity
project (Biswal et al., 2010) (http://www.nitrc.org/plugins/mwiki/index.
php/fcon_1000/). This data set was chosen due to the large number
of subjects (n = 103) and due to the tight age range (range = 20-
23 years, mean = 21.5 years, standard deviation = 0.6 years) in order
to minimize any age-related effects on motion (Van Dijk et al., 2012) or
connectivity (Fair et al., 2008;Hampson et al., 2012). Full demographic in-
formation and imaging parameters can be found elsewhere (Biswal et al.,
2010). Briefly, for each subject, the data set included a high-resolution an-
atomical magnetization prepared rapid gradient echo (MPRAGE) and a
resting-state functional image. The functional images were acquired
with a TR of 1.8 s, an imaging matrix of 64 × 64, 28 slices, voxel dimen-
sions of 4 × 4 × 4.4mm, and 245 frames.We also selected the Cambridge
data set from the 1000 functional connectivity project to use in a replica-
tion study that is presented in the Supplemental Materials section.

Preprocessing

A standard preprocessing pipeline was used. All images were slice
time and motion corrected with fourth-order B-spline interpolation
using SPM (http://www.fil.ion.ucl.ac.uk/spm/). Unless otherwise speci-
fied, all further analysis was performed using BioImage Suite (www.
bioimagesuite.org; (Joshi et al., 2011)). The functional images were
then smoothed with a Gaussian kernel with full width half max
(FWHM) of 6 mm or the uniform smoothing algorithm (see Uniform
Smoothing section). Several covariates of no interest were regressed
from the data including linear and quadratic drift, six rigid-bodymotion
parameters, mean cerebrospinal fluid (CSF) signal, mean white-matter
signal, and mean global signal. The white matter and CSF areas were
defined on a template brain (Holmes et al., 1998), eroded to ensure
only white matter or CSF signal would be included, and warped to the
subjects' space using a series of transformations described below. Final-
ly, the data were low-pass filtered via temporal smoothing with a zero
mean unit variance Gaussian filter (approximate cutoff frequency =
0.12 Hz).

Uniform smoothing

In order to create a uniform level of smoothness across the data set
(thus minimizing group differences associated with image smoothing),
each subject's functional run was smoothed with AFNI's 3dBlurToFWHM
(http://afni.nimh.nih.gov/afni). This program iteratively smoothes a func-
tional series using a diffusion-based smoothing scheme until the images
are smoothed to approximately the desired level. Specifically, the
-detrend, -automask, and -temper options were used. These options
mask the data so only voxels within the brain are used in the smoothing,
remove high-order polynomials trends from the data so that the estimat-
ed smoothness minimizes the impact of spatial structure, and increase
the tolerance used for matching the estimated image smoothness to the
desired smoothness. Both global and local smoothness are smoothed to
approximately the desired level of smoothness. The input was the slice-

timed and motion corrected data and was smoothed to an FWHM of 6
mm. Additional information about this program can be found in the
Supplemental Materials section.

ROI-based connectivity metrics

To evaluate the effect of image smoothness and motion on connec-
tivity, we performed a standard ROI-based (“seed”) analysis using an
ROI centered in the posterior cingulate cortex (PCC, MNI coordinates:
0, −55, 26). The PCC ROI was defined on the MNI reference brain as a
9 mm cube and transformed back (via the inverse of the transforms de-
scribed below) into individual subject space. The time course of the PCC
in a given subject was then computed as the average time course across
all voxels in the PCC ROI. This time course was correlated with the time
course for every other voxel in the gray matter to create a map of
r-values, reflecting ROI-to-whole-brain connectivity. These r-values
were transformed to z-values using Fisher's transform yielding one
map for each subject representing the strength of correlation to the
PCC ROI. This PCC connectivity was chosen to be consistent with other
studies (Satterthwaite et al., 2013; VanDijk et al., 2012; Yan et al., 2013).

Voxel-based connectivity metrics

In addition to ROI-based connectivity analysis, we examined the
relationship between image smoothness/motion and a voxel-wise con-
nectivity metric based on the network theory metric degree. Degree is
simply the sum of all connection weights to a particular node in a
network. For our purposes, each voxel is treated as a separate node and
all connections are functions of the correlation between the time courses
for any two voxels. We examined degree based on a binary network
(Buckner et al., 2009; Martuzzi et al., 2011). In this case, a connection
(correlation) threshold of r = 0.25 was used to determine if two voxels
were connected and degree was simply the count of all such connections
above this threshold. After preprocessing, degreewas calculated for each
functional run. A gray matter mask was first applied to the data so only
voxels in the gray matter were used in the calculation. The gray matter
mask was defined on a template brain (Holmes et al., 1998), dilated to
ensure full coverage of the gray matter, and warped to each individual
subjects' space using a series of transformations described below. The
time course for each voxel was correlated with every other time course
in the gray matter and the voxel-based metrics described above were
calculated. As global signal regression is known to create ambiguity in
the signof the correlation,we only consideredpositive correlations in cal-
culating the voxel-base connectivity metrics (Buckner et al., 2009; Cole
et al., 2012). To account for differences in brain size across participants,
individual degree maps were normalized by one of two methods. For
thefirstmethod, the degreemapswere divided the total number of voxels
in the individual subject's gray matter mask. For the second method, the
degree maps were converted to z-scores by subtracting the mean across
all voxels and dividing by the standard deviation across all voxels. In the
following sections, we refer to the output of the first normalizationmeth-
od simply as degree or degree maps, while we refer to the output of the
second normalizationmethod as normalized degree or normalized degree
maps.While degree can be sensitive to the choice of connection threshold
(Scheinost et al., 2012), the presented motion and smoothing confounds
were robust over a large range of thresholds (0.10 b r b 0.75). We chose
this metric instead of ROI-to-ROI connectivity based on a high-resolution
parcellation of the brain (Finn et al., 2013; Shen et al., 2013) because
degree represents a generalization of this approach as each voxel is treated
as an ROI and has potential clinical utility (Constable et al., 2013).

Common space registration

Tomake inferences at the group level, all single-subject results were
warped to a common template space through the concatenation of a se-
ries of linear and non-linear registrations. The functional series were
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