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Graph theory enables the study of systems by describing those systems as a set of nodes and edges. Graph theory
has been widely applied to characterize the overall structure of data sets in the social, technological, and biolog-
ical sciences, including neuroscience. Modular structure decomposition enables the definition of sub-networks
whose components are gathered in the same module and work together closely, while working weakly with
components from other modules. This processing is of interest for studying memory, a cognitive process that is
widely distributed. We propose a newmethod to identify modular structure in task-related functional magnetic
resonance imaging (fMRI) networks. The modular structure was obtained directly from correlation coefficients
and thus retained information about both signs andweights. Themethodwas applied to functional data acquired
during a yes–no odor recognitionmemory task performed by young and elderly adults. Four response categories
were explored: correct (Hit) and incorrect (False alarm, FA) recognition and correct and incorrect rejection. We
extracted time series data for 36 areas as a function of response categories and age groups and calculated
condition-basedweighted correlationmatrices. Overall, condition-basedmodular partitionsweremore homoge-
neous in young than elderly subjects. Using partition similarity-based statistics and a posteriori statistical analy-
ses, we demonstrated that several areas, including the hippocampus, caudate nucleus, and anterior cingulate
gyrus, belonged to the same module more frequently during Hit than during all other conditions. Modularity
values were negatively correlated with memory scores in the Hit condition and positively correlated with bias
scores (liberal/conservative attitude) in the Hit and FA conditions. We further demonstrated that the proportion
of positive and negative links between areas of different modules (i.e., the proportion of correlated and anti-
correlated areas) accounted formost of the observeddifferences in signedmodularity. Taken together, our results
provided some evidence that the neural networks involved in odor recognitionmemory are organized intomod-
ules and that these modular partitions are linked to behavioral performance and individual strategies.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Most cerebral imaging functional studies have used univariate statis-
tical analyses to localize brain regions involved in specific cognitive
operations (Rissman et al., 2004). However, the concept of the brain
as a large complex network of interconnected elements has become
dominant in modern neuroscience (Mesulam, 1990; Varela et al.,
2001). Understanding how brain regions specifically communicate
with one another during a particular cognitive task remains challenging.

The term “brain connectivity” is used at the functional level to de-
scribe the organization, interrelationships, and integrated performance
of different brain regions (Horwitz, 2003). A distinction is made be-
tweenmethods that consider correlation or covariance between signals

in different regions (functional connectivity) andmethods that attempt
to describe ormake inferences about the direction of influence between
regions (effective connectivity) (Friston, 1994; Rogers et al., 2007).
Techniques for measuring functional connectivity during tasks include
correlations between standardized regression coefficients (Rissman
et al., 2004), principal and independent component analysis (PCA and
ICA) (Calhoun et al., 2001; McKeown and Sejnowski, 1998), and graph
theoretical methods (Bullmore and Sporns, 2009; Fornito et al., 2013).
Techniques that measure effective connectivity include psychophysio-
logical interaction (PPI) (Friston et al., 1997), structural equation
modeling (SEM) (Mclntosh and Gonzalez-Lima, 1994), Granger causal
mapping (Roebroeck et al., 2011), and dynamic causal modeling
(DCM) (Friston et al., 2003; Penny et al., 2004).

While several studies have explored the functional connectivity of
the olfactory network in animals (e.g., Spors et al., 2012; Wilson and
Yan, 2010; Wilson et al., 2011), very few human cerebral imaging stud-
ies have been performed, and most have used effective connectivity.
Zald et al. (1998) used covariance matrices based on PET data to eluci-
date the functional connectivity between the amygdala and the
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orbitofrontal cortex (OFC) during emotional olfactory tasks. Plailly et al.
(2008) combined functional magnetic resonance imaging (fMRI) with
DCM tomeasure attention-dependent network coherence within olfac-
tory pathways. Haase et al. (2011) used SEM to test a functional connec-
tivity model during recognition memory in individuals genetically
at risk for Alzheimer's disease. Karunanayaka et al. (2013) used
whole-brain ICA decomposition to identify subcomponents involved
in olfactory perception as well as SEM to study the directionality of in-
teractions between these subcomponents. PPI analyses have also been
used to demonstrate amplified functional connectivity between several
olfactory-related regions, either in response to negative odors, particu-
larly in anxiety (Krusemark and Li, 2012), or during passive smelling
(Nigri et al., 2013).

We recently investigated the neural basis of odor recognition in
young and elderly adults (Royet et al., 2011) by exploring correct
(Hit) and incorrect (false alarms, FA) recognition and correct (CR) and
incorrect (Miss) rejection. To characterize the brain responses in
terms of functionally connected systems, we examined the functional
relationships between the main regional foci using multivariate analy-
ses of covariance and canonical variate analyses. We observed that sig-
nificant activity in the hippocampus and parahippocampal gyrus was
associated with correct recognition of odors. In this study, we go a
step further by incorporating graph theory to study the differences be-
tween the networks underpinning correct and incorrect olfactorymem-
ories and to demonstrate how the brain areas composing these
networks interact with each other.

Graph theory is used to quantify the overall properties of any system
that can be described as a graph, i.e., a set of nodes and a set of edges
representing interactions between nodes. Graph theory has beenwidely
applied to researchfields as varied as biology, sociology, and technology
science (Barabási, 2003; Newman et al., 2006) and, more recently, to
brain data (Bullmore and Sporns, 2009). Graph theory has been used
in fMRI to analyze both resting-state functional data (e.g., Achard and
Bullmore, 2007; Achard et al., 2006) and task-related data (Bassett
et al., 2011; Ginestet and Simmons, 2011; Park et al., 2012; Shinkareva
et al., 2008; Wang et al., 2010).

Among several analyses derived from graph theory, modular de-
composition aims at partitioning a network into several modules (also
referred to as communities or clusters). Modules are characterized by
nodes that work tightly together and less tightly with nodes belonging
to othermodules (Newman and Girvan, 2004). Modular decomposition
is achieved by maximizing a quality function, called modularity, and by
assessing how well the nodes fit to modules of a given partition of the
network. Modular decomposition has previously been applied to
resting-state fMRI (Chen et al., 2008; Fair et al., 2009; Meunier et al.,
2009a; Power et al., 2012; Stevens et al., 2012).

Several limitations of modular analysis can result in a loss of infor-
mation. First, computing modularity over a range of thresholds may
lead to issues concerning the independence of the considered samples
(Langer et al., 2013). Second, modular analysis considers only positive
correlations, which is inadequate for functional connectivity analysis
because anti-correlated sub-systems can work in opposition to each
other (Fox et al., 2005). Third, statistical comparisons of graphs obtained
from different experimental conditions are not straightforward, al-
though some methods have been proposed to compare modular struc-
tures between two groups of subjects when data were acquired in the
resting-state (Alexander-Bloch et al., 2012; Moussa et al., 2012).

In this article, we investigated the functional networks involved in
olfactory recognition memory. We overcame the limitations previously
described by using modularity quality functions for weighted and
signed graphs (Gómez et al., 2009; Traag and Bruggeman, 2009). We
developed statistical validation methods using similarity-based tests
to assess the significance of differences obtained at the modular level
between the young and elderly adults andbetween the fourmemory re-
sponse categories (Hit, FA, CR, and Miss). We further correlated the
modularity values with the behavioral performance of the subjects.

Materials and methods

The methodology was reported in detail previously (Royet et al.,
2011) and is briefly described here. Only the distinct aspects are exten-
sively described in the present study.

Experimental task and behavioral analysis

Subjects
A total of 16 young [7 men; age: 27.14 ± 5.27 years (mean ± SD);

range: 21.90–37.30] and 22 elderly (11 men; age 68.64 ± 3.29 years;
range: 65.00–74.76) right-handed subjects participated in the study.
This experiment was conducted in accordance with the Declaration of
Helsinki. All subjects provided written informed consent as required
by the local Institutional Review Board according to French regulations
on biomedical experiments with healthy volunteers [Ethical Committee
of CPP-Sud Est II (n CPP A 06-024), DGS2006-0226, May 11, 2006].

Stimuli and experiment
The subjects participated in a classical olfactorymemory recognition

task initially proposed by Engen and Ross (1973). A total of 100 odor-
ants were used, comprising 50 target (old) and 50 distractor (new)
odorants. Stimuli were counterbalanced by quality and mean scores of
intensity, hedonicity, and familiarity obtained from previous data
(Royet et al., 1999). The odorantswere presented using an airflow olfac-
tometer, which allowed the stimuli to be synchronized with breathing
(Vigouroux et al., 2005). Odorants were delivered through a standard
oxygen mask positioned on the subject's face.

Two functional runs corresponding to encoding and retrieval ses-
sionswere performed, separated by the structural image acquisition se-
quence. The 50 target odorants were presented in the encoding session
and then interleavedwith the 50 distractor odorants in the retrieval ses-
sion. Odorants were delivered according to an event-related fMRI de-
sign with a jittered interstimulus interval of ~15 s, depending on the
participant's respiration. The order of presentation of the odorants
was randomized between participants for both sessions. During the
encoding session, participants indicatedwhen they detected an odorant
by pressing one button with their right hand. Participants were not
instructed about the objective of the next session. During the retrieval
session, the participants indicated whether or not they had already
smelled the odorant in the first session.

Behavioral data analysis

Recognition memory performance was assessed using parameters
issued from signal detection theory (Lockhart and Murdock, 1970).
Hit,Miss, CR, and FA response categorieswere assigned based on the ex-
perimental conditions (old or new odorants) and the subjects' behav-
ioral answers (yes or no). Two parameters were calculated from the
Hit and FA scores: a memory score (d′L) and a response bias score
(CL). Corwin (1989) previously described these calculations as follows:

d0L ¼ ln
HR 1−FRð Þ
FR 1−HRð Þ ð1Þ

CL ¼ 0:5� ln
1−FRð Þ 1−HRð Þ

HR� FRð Þ ð2Þ

whereHR represents theHit rate [(NHit+0.5) / (N1+ 1)], FR represents
the false-alarm rate [(NFA + 0.5) / (N2 + 1)], and N1 and N2 represent
the number of old and new odorants, respectively, for which the sub-
jects provided an answer. As N1 = NHit + NMiss, and N2 = NCR+ NFA, in-
formation about all 4 response categories are included in both d′L and CL.
Thememory scoreswere good or poor (positive andnegative values, re-
spectively). The response bias scores established three individual
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