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An important example of brain plasticity is the change in the structure of the orientation map in mammalian
primary visual cortex in response to a visual environment consisting of stripes of one orientation. In principle
there are many different ways in which the structure of a normal map could change to accommodate increased
preference for one orientation. However, until now these changes have been characterised only by the relative
sizes of the areas of primary visual cortex representing different orientations. Here we extend to the stripe-
reared case a recently proposed Bayesian method for reconstructing orientation maps from intrinsic signal opti-
cal imaging data. We first formulated a suitable prior for the stripe-reared case, and developed an efficient meth-
od for maximising the marginal likelihood of the model in order to determine the optimal parameters. We then
applied this to a set of orientation maps from normal and stripe-reared cats. This analysis revealed that several
parameters of overall map structure, specifically the difference between wavelength, scaling and mean of the
two vector components of maps, changed in response to stripe-rearing, which together give a more nuanced as-
sessment of the effect of rearing condition on map structure than previous measures. Overall this work expands
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our understanding of the effects of the environment on brain structure.

© 2014 Elsevier Inc. All rights reserved.

Introduction

A critical question for understanding brain plasticity is to understand
how the sensory environment influences brain structure. An important
and common model system in this regard is the effect of visual activity
during early life on the spatial arrangement of topographic maps in the
primary visual cortex of mammals such as cats, ferrets and monkeys
(Espinosa and Stryker, 2012). In particular, the spatial arrangement
of preference for orientation (Blasdel and Salama, 1986), direction
(Weliky et al., 1996), spatial frequency (Hiibener et al.,, 1997; Issa et al.,
2000) and ocular dominance (Anderson et al., 1988; Bonhoeffer et al.,
1995), as well as the relationships between these maps (Shmuel and
Grinvald, 1996; Hiibener et al., 1997), has been widely studied.

A particularly striking example of the effect of the environment on
these maps is stripe-rearing, in which animals are exposed only to
edges of a particular orientation during the critical period (Blakemore
and Cooper, 1970; Hirsch and Spinelli, 1970). This leads to an increase
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in the proportion of primary visual cortical neurons preferring the
reared orientation, at the expense of other orientations (Sengpiel
et al., 1999). However, so far this proportion is the only quantitative
measure that has been used to characterise the difference in structure
between normal and stripe-reared orientation maps. This measure is
not robust to changes in the subjective spatial filtering applied to
maps, which are traditionally obtained by vector averaging noisy data
from single-condition optical imaging experiments. Furthermore this
measure does not provide a method for determining precisely how
the structure of maps changes to accommodate the larger preference
for a single orientation which is induced by stripe-rearing.

Recently a novel method was introduced which improves on vector
averaging for determining orientation map structure, using a Bayesian
approach based on Gaussian processes (Macke et al., 2011). This meth-
od uses prior knowledge about map structure in a principled way rather
than via subjectively-chosen smoothing parameters, and provides
quantitative error estimates for the resulting map. However, this method
contained assumptions which are violated by maps from abnormally-
reared animals.

We therefore first generalised this Gaussian process method to a
much broader class of visual map data, including abnormal rearing
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conditions. We then used it to interrogate map structure in data from
the stripe-reared cats of Sengpiel et al. (1999). Besides allowing for
more accurate estimates of the maps than in the original study, the
method revealed that three parameters of map structure change with
stripe-rearing, rather than just the single parameter of the proportion
of neurons preferring the reared orientation. These three parameters
are the difference between the two vector components in terms of
their wavelengths, scalings and means. Together these three parame-
ters provide a much richer description of both natural variability be-
tween maps from different individuals, and how maps change in
response to altered environments.

Materials and methods
Orientation preference maps

We represent an orientation preference map as a 2D complex field
m(x), X € R? (mathematically equivalent to a 2D vector field), where
the preferred orientation and the strength of that preference at each
point are given by half the argument and the magnitude, respectively,
of the complex field at that point. The argument is halved as orientation
is periodic in  rather than 2m radians.

The classical method of estimating orientation preference maps
from imaging data is known as vector averaging,

m(x) :%i(rj(x)exp(zeji)), 1)
ym

where 1;(X) is the cortical response at location X € {X, ..., X,} C R?
during the j™ trial out of N, where a stimulus of orientation 6; was pre-
sented. This map is simply the vectorially-averaged raw response to
the stimuli. To account for noise in the result, vector averaged maps
are usually then high- and low-pass Gaussian spatially filtered.

Gaussian process regression map estimation

Macke et al. (2011) introduced a novel method for estimating orien-
tation preference maps from optical imaging data by applying Gaussian
process (GP) regression (Rasmussen and Williams, 2006) to the prob-
lem of estimating a 2D vector field from noisy data. The important
findings of the paper are the choice of an appropriate prior, a method
for estimating the parameters of the prior, an appropriate noise model
and a method for fitting it to the data, and the use of approximation
techniques for dealing with large datasets. Here we define the model
equivalently but in our own notation for the convenience of the exten-
sions we make below.

Hereafter let r; = ((X4), ..., 1j(Xn)) " refer to the vector of responses
at each of the n observed points in the cortex (i.e., the experimental
image reshaped as a vector). Let m(x) be the true orientation preference
map underlying the data, and let m refer to the flattened and
concatenated vector of the true map's components, that is,

m = (real(m(x,)), ..., real(m(x,)), imag(m(x, )), ..., imag(m(x,)))".

Then we assume that the data can be written as r; = V/m + ¢,
where ¢; ~ V(0,3) and

. T
V= (cos 26j,sm26j) I,

wherel, is an n x n identity matrix and ® is the Kronecker product. That
is, we observe the component of the underlying map in the 6; direction
corrupted by some correlated Gaussian noise.

A prior defining a distribution of maps is now defined as a Gaussian
process, defined by an identically zero mean function and a covariance
function K which specifies the covariance between points in the map
both within and across the two map vector components. Macke et al.
(2011) used a difference of Gaussians covariance function,

2 2
K%, X' Ik, K) = 60 Y %exp(—z(mix')
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where 6;; is the Kronecker delta, x and x’ are the two positions in the
map, and k and k’ are either 1 or 2, the real and imaginary components
of the map respectively. The assumption that the components are un-
correlated gives K(x, x’, 1, 2) = K(x, x/, 2, 1) = 0. Macke et al. (2011)
seta; = — o, so that K has zero mean, and 0, = 20; to reduce the num-
ber of parameters. These parameters can be interpreted as scaling pa-
rameters ;s and filter widths ojs, which correspond to the
wavelength of the map. Macke et al. (2011) showed that this function
fit the empirical autocovariance functions of their data well. We found
the same result with our data, and additionally found that letting all
four parameters (i.e., both ¢y and both 0;) vary independently did not
substantially improve the fit to the empirical functions (data not
shown). We therefore chose to use the same covariance function as
Macke et al. (2011) but with all the multiplying constants (i.e., both
o, the sum of squared 0; and 2m) collected into a single scaling param-
eter coefficient, which we call ¢, and set 0 := 0, = 20; for notational
simplicity:
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To perform Gaussian process regression, the prior distribution
defined at the observed points X = {xq, ..., X,} is conditioned on the
data to give a posterior distribution, the mean of which is the Bayes op-
timal estimate of the underling map m. The prior on the set of observed
points is p(m) = A (m; 0, 30r ), where the covariance matrix is

w12 v _v/I2
K(x, X, k,K) = 6(k, K)o’ {exp (xx|> + %exp <|xx|> 2)

This matrix needs to be calculated, stored and inverted, which is a
computationally demanding task. To make this tractable, Macke et al.
(2011) used a low-rank approximation to the prior, generated by an in-
complete Cholesky decomposition. This results in a prior of the form
2 _prior =D + GG', where D is 2n x 2n and diagonal, and G is 2n x g,
with g < 2n. The eigenspectrum of the chosen covariance function
goes to zero sufficiently quickly to make the incomplete Cholesky de-
composition a good approximation. To estimate the parameters oz and
o of the prior covariance function (Eq. 2), Macke et al. (2011) fit the co-
variance function to the average of the radial component of the autocor-
relation function of the two components of the filtered, vector averaged
map.

As per Bayes' rule, the posterior distribution is proportional to the
product of the prior and the likelihood,

p(m|r17 "'7rN) ocp(m)p(rl, ~-~7rN|m)‘
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