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10Data assimilation is a fundamental issue that arises acrossmany scales in neuroscience— ranging from the study
11of single neurons using single electrode recordings to the interaction of thousands of neurons using fMRI. Data
12assimilation involves inverting a generativemodel that can not only explain observed data but also generate pre-
13dictions. Typically, the model is inverted or fitted using conventional tools of (convex) optimization that invari-
14ably extremise some functional — norms, minimum descriptive length, variational free energy, etc. Generally,
15optimisation rests on evaluating the local gradients of the functional to be optimized. In this paper, we compare
16three different gradient estimation techniques that could be used for extremising any functional in time— (i) fi-
17nite differences, (ii) forward sensitivities and a method based on (iii) the adjoint of the dynamical system. We
18demonstrate that the first-order gradients of a dynamical system, linear or non-linear, can be computedmost ef-
19ficiently using the adjointmethod. This is particularly true for systemswhere the number of parameters is greater
20than the number of states. For such systems, integrating several sensitivity equations – as required with forward
21sensitivities – proves to bemost expensive,whilefinite-difference approximations have an intermediate efficien-
22cy. In the context of neuroimaging, adjoint based inversion of dynamical causal models (DCMs) can, in principle,
23enable the study of models with large numbers of nodes and parameters.

24 © 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
25 (http://creativecommons.org/licenses/by/3.0/).
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30 IntroductionQ5

31 An important goal of systems neuroscience is to integrate empirical
32 data from various neuroimaging modalities with biologically informed
33 models that describe the underlying generative processes. Here, the
34 data to be explained are for example M/EEG and fMRI recordings
35 made while subjects perform various experimental tasks, and the un-
36 derlying neurodynamic processes are framed in terms of differential
37 equations describing activity in neural masses, mean fields, or neural
38 fields (David et al., 2006; Deco et al., 2008; Friston et al., 2003).
39 Considerable insight can be gained from studying the emergent
40 properties of such neurodynamic processes. These can then be qualita-
41 tively comparedwith empirical data, allowing consilience amongmulti-
42 ple levels of description (Gazzaniga, 2010; Hopfield and Brody, 2001;
43 Wilson, 1999). An alternative approach is to directly fit neurodynamical
44 models to neuroimaging data using standard model fitting procedures
45 from statistics and machine learning (Bishop, 2006; Press et al., 1992).
46 Differences in the generative processes induced by experimental ma-
47 nipulations can then be associated with changes in underlying brain
48 connectivity. One example of such an approach is Dynamic Causal

49Modelling (DCM) (Friston et al., 2003) which fits differential equation
50models to neuroimaging data using a variational Bayesian scheme
51(Friston et al., 2007).
52More generally, in the statistics and machine learning literature var-
53ious methods have been employed to fit differential equations to data,
54frommaximum likelihood approaches (Ramsay et al., 2007) to Bayesian
55sampling algorithms (Calderhead and Girolami, 2009; Vyshemirsky and
56Girolami, 2008). The majority of these convex optimisation approaches
57involve computing the gradient; the change in the cost function pro-
58duced by a change in model parameters. This gradient is then combined
59with information from line searches (e.g., Wolfe's conditions) or
60methods involving a Newton, quasi-Newton (low-rank) or Fisher infor-
61mation based curvature estimators to updatemodel parameters (Bishop,
621995; Nocedal andWright, 2006; Press et al., 1992). Themain computa-
63tional bottleneck in these algorithms is the computation of the gradient
64(or the curvature) of the parametric cost function. This motivates the
65search for efficient methods to evaluate gradients.
66This paper compares three different methods for computing gradi-
67ents, and studies the conditions under which each is preferred. The first
68is the Finite Difference (FD)method,which is the simplest andmost gen-
69eral method — and is currently used in DCM. The second is the Forward
70Sensitivity (FS; also known as tangent linear) method, which has
71previously been proposed in the context of modeling fMRI time
72series (Deneux and Faugeras, 2006). The third is the Adjoint Method
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73 (AM) which has previously been used in the context of dynamical sys-
74 tems theory (Wang, 2013), weather forecasting (Errico, 1997), image
75 registration (Clark, 2011) and single-neuron biophysics (Stemmler
76 et al., 2012).
77 The paper is structured as follows — the methods section describes
78 each approach including amathematical derivation of the adjointmeth-
79 od. Examples of the FS and AMupdates are then provided for the case of
80 simple Euler integration. The results section reports numerical simula-
81 tions that disclose the scaling characteristics of each method. Simula-
82 tions are provided for linear dynamical and weakly-coupled oscillator
83 systems. We conclude with a discussion of the relative merits of each
84 method.

85 Methods

86 We consider dynamical systems of the form

ẋ ¼ f x; pð Þ
j x;pð Þ ¼ −1

2
y−g x;pð Þk k2 ð1Þ

8888 where x is a state variable, the dot notation denotes a timederivative dx
dt, t

is time, f(⋅) is the flow equation (dynamics), and p are model parame-
89 ters. The model produces a prediction via an observation function
90 g (x, p) and an instantaneous cost function j (x, p) measures the squared
91 difference from data points y. The total cost is then given by the integral
92 up to time point T

J pð Þ ¼
Z T

0
j x; pð Þdt: ð2Þ

9494

We consider three methods for computing the gradient dJ
dp.

95 Finite difference method

96 The (one-sided) finite difference approximation to the gradient is
97 then

dJ
dpi

¼ J pþ δið Þ− J pð Þ
δi

ð3Þ

9999 where δi denotes a small change (generally,
ffiffiffi
ϵ

p
where ϵ is the machine

epsilon) to the ith parameter. The error in the computation of this gra-
100 dient is of order δi. The computation of dJ

dp requires P + 1 runs of the in-
101 tegration process, one for each model parameter. It is also possible to
102 use central differences

dJ
dpi

¼ J pþ δið Þ− J p−δið Þ
2δi

ð4Þ

104104 which has an error of order δi2 but requires 2P + 1 runs of the integra-
tion process. Variations on the vanilla FD approach are discussed in

105 (Press et al., 1992; Richtmeyer and Morton, 1967).

106 Forward Sensitivity method

107 The original dynamicalmodel (Eq. (1)) can be implicitly differentiat-
108 ed w.r.t parameters to give

dẋ
dp

¼ ∂ f
∂x

dx
dp

þ ∂ f
∂p : ð5Þ

110110

If the state variables are of dimension D and the parameters of
111 dimension P then the quantity dẋ

dp is a D + P matrix, which can be
112 vectorized to form a new flow function. This forms a new dynamical
113 system of dimension D × P that can then be integrated using any
114 numerical method to produce dx

dp as a function of time. The Forward

115Sensitivity approach has been known since the publication of
116Gronwall's theorem (Gronwall, 1919). The cost gradient is then given
117by accumulating the sensitivity derivative dx

dp over time according to:

dJ
dp

¼
Z T

0

dj
dp

dt

dj
dp

¼ ∂ j
∂x

dx
dp

þ ∂ j
∂p

¼ ∂ j
∂g

∂g
∂x

dx
dp

þ ∂ j
∂g

∂g
∂p :

ð6Þ

119119

Euler example

120This section illustrates the FS approach first-order Euler integration
121of the dynamics

xn ¼ xn−1 þ τf xn−1;pð Þ ð7Þ

123123at discrete times t(n). The FS method is based on differentiating this
equation to give

dxn
dp

¼ dxn−1

dp
þ τ

∂ f
∂xn−1

dxn−1

dp
þ ∂ f
∂p

� �
: ð8Þ

125125

This method is illustrated in Fig. 1 where the solid path indicates a
126trajectory of points xn for a dynamical system with parameters p and
127the dotted path indicates the trajectory xn for the same dynamical sys-
128tem but with parameters p ¼ pþ δi . The dotted path can be obtained
129from the solid path via the total derivative dxn

dpi
in the direction of the

130perturbation, δi. The FS method provides a method for computing this
131derivative. Under a first order Euler approach for integrating the
132dynamics, this is implemented using the above recursion.
133Because the perturbed path (dotted in Fig. 1) can be reached from
134the original trajectory via the total derivative dxn

dp , there is no need to sep-
135arately integrate the system with parameters p . Geometrically, the
136points xn in Fig. 1 can be reached via the solid and dashed lines (rather
137than the dotted lines).
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Fig. 1. Forward Sensitivity The solid path indicates a trajectory of points xn, with n=1…5,
for a dynamical systemwith parameters p. The dotted path indicates the trajectory xn for
the same dynamical system but with parameters p ¼ pþ δi . The dotted path can be
reached from the solid path via the total derivative dxn

dp . The Forward Sensitivity approach
provides a method for computing this derivative.
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