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18Wepresent a new framework for prior-constrained sparse decomposition ofmatrices derived from the neuroim-
19aging data and apply this method to functional network analysis of a clinically relevant population. Matrix
20decomposition methods are powerful dimensionality reduction tools that have found widespread use in neuro-
21imaging. However, the unconstrained nature of these totally data-driven techniquesmakes it difficult to interpret
22the results in a domain where network-specific hypotheses may exist.
23We propose a novel approach, Prior Based Eigenanatomy (p-Eigen), which seeks to identify a data-driven
24matrix decomposition but at the same time constrains the individual components by spatial anatomical priors
25(probabilistic ROIs). We formulate our novel solution in terms of prior-constrained ℓ1 penalized (sparse) princi-
26pal component analysis. p-Eigen starts with a common functional parcellation for all the subjects and refines it
27with subject-specific information. This enables modeling of the inter-subject variability in the functional parcel
28boundaries and allows us to construct subject-specific networks with reduced sensitivity to ROI placement.
29We show that while still maintaining correspondence across subjects, p-Eigen extracts biologically-relevant and
30patient-specific functional parcels that facilitate hypothesis-driven network analysis. We construct default mode
31network (DMN) connectivity graphs using p-Eigen refined ROIs and use them in a classification paradigm. Our
32results show that the functional connectivity graphs derived from p-Eigen significantly aid classification of
33mild cognitive impairment (MCI) as well as the prediction of scores in a Delayed Recall memory task when com-
34pared to graph metrics derived from 1) standard registration-based seed ROI definitions, 2) totally data-driven
35ROIs, 3) a model based on standard demographics plus hippocampal volume as covariates, and 4)Ward Cluster-
36ing based data-driven ROIs. In summary, p-Eigen incarnates a new class of prior-constrained dimensionality re-
37duction tools that may improve our understanding of the relationship between MCI and functional connectivity.

38 Published by Elsevier Inc.
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43 Introduction & related work

44 The presence of large and diverse neuroimaging datasets has
45 brought the importance of data analysis techniques into focus. These is-
46 sues are particularly salient in blood oxygen level dependent (BOLD)
47 fMRI where recent papers have highlighted the sensitivity of this mo-
48 dality to specific analysis choices (Carp, 2012; Haller and Bartsch,
49 2009). Network analysis of functional connectivity within the brain
50 fromBOLDdata has received a significant amount of attention and is no-
51 torious for being sensitive to analysis decisions (Dawson et al., 2012;
52 Eke et al., 2012).
53 Functional connectivity is defined as the temporal co-activation of
54 neuronal activation patterns between anatomically separated regions
55 of the brain (Aertsen et al., 1989) and is thought to be an indicator of
56 functional communication between these different regions. Typically,

57functional connectivity studies measure the level of correlation be-
58tween the time-series of the resting state BOLD signal of the different
59brain regions (Biswal et al., 1997; Damoiseaux et al., 2006; Salvador
60et al., 2005). Studying thebrain as an integrative network of functionally
61interacting brain regions can shed new light on large scale neuronal
62communication in the brain and how this communication is impaired
63in neurological diseases (Bullmore and Sporns, 2009; Mohammadi
64et al., 2009; Seeley et al., 2009).
65There are two predominant approaches for the analysis of functional
66connectivity:

67• Seed (ROI) based approaches: These are straightforward and operate
68in the traditional confirmatory network paradigm (Tukey, 1977).
69They involve computing the correlation between the time series of a
70given (preselected) protect seed brain region (ROI)2 against all the
71other brain regions, resulting in a set of functional connectivity
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2 One can compute these correlations either voxelwise or by averaging over the voxels
in an entire ROI.

YNIMG-11367; No. of pages: 14; 4C: 3, 5, 6, 7, 8, 9, 10, 11

http://dx.doi.org/10.1016/j.neuroimage.2014.05.026
1053-8119/Published by Elsevier Inc.

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

Please cite this article as: Dhillon, P.S., et al., Subject-specific functional parcellation via Prior Based Eigenanatomy, NeuroImage (2014), http://
dx.doi.org/10.1016/j.neuroimage.2014.05.026

http://dx.doi.org/10.1016/j.neuroimage.2014.05.026
mailto:dhillon@cis.upenn.edu
Unlabelled image
http://dx.doi.org/10.1016/j.neuroimage.2014.05.026
Unlabelled image
http://www.sciencedirect.com/science/journal/10538119
http://dx.doi.org/10.1016/j.neuroimage.2014.05.026
http://dx.doi.org/10.1016/j.neuroimage.2014.05.026


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

72 maps of the given brain regions (Biswal et al., 1997; Cordes et al.,
73 2000). These functional connectivity maps can then be used to con-
74 struct resting-state-networks of functionally correlated regions in the
75 brain (Fox et al., 2005). The ct seed region can either be selected
76 based on prior clinical knowledge or it can be selected from the activa-
77 tion map of a separate task dependent fMRI scan.
78 • Learning based approaches: These approaches use statistical tech-
79 niques to explore functional connectivity in the brain, obviating the
80 need to define a seed region. Typical methods employed are Principal
81 Component Analysis (PCA) (Friston, 1998), Independent Component
82 Analysis (ICA) or its variants e.g. Group ICA (Beckmann and Smith,
83 2004; Beckmann et al., 2005; Damoiseaux et al., 2006; Petrella et al.,
84 2011; Varoquaux et al., 2010b) or hierarchical methods (Blumensath
85 et al., 2013; Cordes et al., 2002; Salvador et al., 2005). These methods
86 strive tofind a set of orthogonal or independent signals in the time se-
87 ries that can explain the resting state activity patterns. ICA based
88 methods are the popular methods in this setting as they can find a
89 set of independent signals from whole brain voxelwise data and also
90 due to the public availability of tools like MELODIC in FSL (Jenkinson
91 et al., 2012) for ICA and Group ICA of fMRI Toolbox (GIFT) (Calhoun
92 et al., 2001). Subsequently, one can create brain connectivity
93 networks from the outputs of these approaches by computing correla-
94 tions between the different (independent/orthogonal) signals they
95 find.

96 The brain networks found by the above approaches are represented
97 as a set of vertices (brain regions) connected by edges which represent
98 the strength of correlation between those two regions (He and Evans,
99 2010; Stam et al., 2007). Various independent studies (surveyed here
100 (van den Heuvel and Hulshoff Pol, 2010)) have consistently found a
101 set of eight functional connectivity networks in the brain. One can use
102 a set of key properties of the network graph e.g. clustering coefficient,
103 centrality and modularity to get further insights into the flow of neuro-
104 nal signals within a network (He and Evans, 2010; Stam et al., 2007).
105 The above-mentioned approaches for analyzing functional connec-
106 tivity and constructing brain networks suffer froma variety of problems.
107 The Group ICA based approaches do a group decomposition of the time
108 series' images of the entire cohort; they have an averaging effect and
109 erode away any subject specific characteristics of the network. So, the
110 Group ICA analysis is usually followed by a back reconstruction step to
111 generate subject-specific functional connectivity maps (Smith et al.,
112 2011). However, it is unclear how to choose a statistically justified
113 threshold to binarize these maps.
114 The seed based approaches also suffer from the problem of averag-
115 ing the signal and may be sensitive to ROI placement (Zhang et al.,
116 2012), co-registration errors and the specific ROI boundaries. These ap-
117 proaches assume that the signal lies totally within a predefined region.
118 However, the important signal may have slightly different boundaries
119 than the scientist's conception. The data representation (or spatially
120 varying noise) may also lead to strong or weak signal within different
121 parts of the ROI. Such dataset specific information is not taken into ac-
122 count by a traditional seed based approach. When effects are localized
123 to the selected region, and that region is well-defined, a seed based
124 analysis may provide the most sensitive testing method. However,
125 some conditions involve a network of regions that may not be fully
126 identified.
127 Furthermore, it has been shown that decreased/impaired functional
128 connectivity in certain brain networks, for instance, the default mode
129 network (DMN) has association with neurodegenerative disorders e.g.
130 Alzheimer's disease (AD) (Greicius et al., 2004; Sheline et al., 2010),
131 schizophrenia (Liu et al., 2008; Whitfield-Gabrieli et al., 2009), multiple
132 sclerosis (MS) (Lowe et al., 2008), mild cognitive impairment (MCI)
133 (Agosta et al., 2012; Bai et al., 2009; Hedden et al., 2009; Petrella et al.,
134 2011). So, it has become even more imperative to improve statistical
135 analysis methods to efficiently leverage the scarce patient BOLD fMRI
136 data that is typically available.

137In this paper, we propose a method that integrates ideas from both
138the seed based and learning based approaches. Our contributions in
139this paper are threefold.

140(1) We contribute a general method for prior constrained eigen de-
141composition (p-Eigen) of high-dimensional matrices and a
142novel algorithm for its optimization.
143(2) Publicly available implementation of our approach in C++.
144(3) Application of p-Eigen for deriving subject specific functional
145parcellations from BOLD data (which are later used to derive
146functional networks) and an evaluation of these novel measure-
147ments in the context of MCI and prediction of delayed recall in a
148memory task.

149
150Our approach provides a principledway of incorporating priors in an
151otherwise totally data-driven approach based on Sparse Principal Com-
152ponent Analysis (SPCA) (d'Aspremont et al., 2007; Shen and Huang,
1532008; Witten et al., 2009; Zou et al., 2006).
154p-Eigen allows an initial binary or probabilistic ROI to adapt to the un-
155derlying subject-specific covariation within the data. At the same time,
156p-Eigen maintains proximity to (and the locality of) the original region
157and thus retains the advantages of the standard seed based approach.
158p-Eigen also maintains non-negativity in the estimated anatomically-
159constrained eigenvector, thereby keeping ROI interpretability. This
160allows us to modify the definitions of labels to capture the variation in
161dataset (a given subject's time series) while still staying close to the ini-
162tial ROI definitions. p-Eigen therefore produces labelings with “soft”
163weighted averages and as we show in the experimental section, are
164more sensitive to the underlying brain data than a standard ROI.
165Given an ROI set, p-Eigen has only one key parameter to tune the
166weight of the prior term guiding the decomposition. Therefore, our op-
167timization objective provides a tradeoff between 1) staying close to the
168initial ROI definitions and 2) allowing data to lead the exploratory anal-
169ysis by explaining variance through PCA. A goodway to think about this
170is as ROI definitions forcing us to be conservative and staying close to the
171initial brain parcellation; on the other hand the SPCA component gives
172us liberty to be either more exploratory or more focused on the content
173of the given dataset. The tradeoff between the two competing para-
174digms is defined by user tunable (prior strength) parameter, which is
175chosen via cross validation.
176p-Eigen does a prior constrained sparse decomposition of each sub-
177ject's time series image separately to create subject-specific functional
178networks, so it does not suffer from the problem of averaging as
179Group ICA does. Moreover, the priors help us maintain a direct corre-
180spondence between the anatomy of the same regions across different
181subjects hence leading to better clinical interpretability. Our proposed
182approach is shown in Fig. 1.
183We have drawn a clear contrast between our approach and the two
184related approaches namely seed based approaches (no influence of
185data) and Group ICA/PCA based approaches (only data driven). That
186said, there has also been substantial work on incorporating prior infor-
187mation across subjects to build subject-specific functional networks as
188proposed by this paper.
189Some early work that performed PCA on fMRI signal within ROIs
190(Nieto-Castanon et al., 2003) clearly foreshadowed p-Eigen. Thirion
191et al. (2006) also proposed a spectral learning based technique for
192parcellation that delineates homogeneous and connected regions across
193subjects, providing subject-specific functional networks.
194The research that is perhaps closest to ours is Ng et al. (2009a),
195Deligianni et al. (2011) and Blumensath et al. (2013). Ng et al.
196(2009a) used group replicator dynamics (GRD) for finding sparse
197functional networks that are common across subjects but have
198subject-specific weightings of the brain regions. Langs et al. (2010)
199performed functional alignment across subjects to achieve improved
200functional correspondences across subjects. Deligianni et al. (2011)
201used brain anatomical connectivity to constrain the conditional
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