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16 Linking structural neuroimaging data from multiple modalities to cognitive performance is an important
17challenge for cognitive neuroscience. In this study we examined the relationship between verbal fluency perfor-
18mance and neuroanatomy in 54 patients with frontotemporal degeneration (FTD) and 15 age-matched controls,
19all of whom had T1- and diffusion-weighted imaging. Our goal was to incorporate measures of both gray matter
20(voxel-based cortical thickness) and white matter (fractional anisotropy) into a single statistical model that
21relates to behavioral performance. We first used eigenanatomy to define data-driven regions of interest
22(DD-ROIs) for both gray matter and white matter Q2. Eigenanatomy is a multivariate dimensionality reduction
23approach that identifies spatially smooth, unsigned principal components that explain themaximal amount
24of variance across subjects. We then used a statistical model selection procedure to see which of these
25DD-ROIs best modeled performance on verbal fluency tasks hypothesized to rely on distinct components
26of a large-scale neural network that support language: category fluency requires a semantic-guided search
27and is hypothesized to rely primarily on temporal cortices that support lexical-semantic representations;
28letter-guided fluency requires a strategic mental search and is hypothesized to require executive resources
29to support a more demanding search process, which depends on prefrontal cortex in addition to temporal
30network components that support lexical representations. We observed that both types of verbal fluency
31performance are best described by a network that includes a combination of gray matter and white matter.
32For category fluency, the identified regions included bilateral temporal cortex and a white matter region in-
33cluding left inferior longitudinal fasciculus and frontal–occipital fasciculus. For letter fluency, a left tempo-
34ral lobe region was also selected, and also regions of frontal cortex. These results are consistent with our
35hypothesized neuroanatomical models of language processing and its breakdown in FTD. We conclude
36that clustering the data with eigenanatomy before performing linear regression is a promising tool for mul-
37timodal data analysis.

38 © 2014 Published by Elsevier Inc.
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43 Introduction

44 One of the fundamental challenges of cognitive neuroscience is re-
45 lating brain anatomy to cognitive processes. Most neuroimaging studies
46 linking brain structure to behavior use mass univariate approaches, re-
47 lying on a whole-brain regression framework in which the relationship
48 between a dependent variable (e.g. gray matter density or fractional
49 anisotropy; FA) and a behavioral measure is assessed at every voxel in

50the brain.1 An advantage of this traditional approach is that it makes
51few a priori assumptions about the location of the relationship, or the
52spatial extent of the brain region(s) relating to behavior. However,
53there are also some challenges. An obvious limitation is that, without
54some sort of prior narrowing of focus, voxelwise methods result in a
55large number of statistical tests that need correction for multiple com-
56parisons. A common strategy to address multiple comparisons is to ac-
57cumulate voxel data into larger regions of interest (ROIs). However,
58ROIs are often difficult and labor-intensive to define for each applica-
59tion. For example, the cytoarchitectonic boundaries of Broca's area
60involved in language are both structurally (Amunts et al., 1999) and
61functionally (Clos et al., 2013) heterogeneous across individuals. The
62anatomical boundaries of a particular label set may not align with
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Abbreviations: AIC, Aikake Information Criterion; AICc, corrected AIC; bvFTD,
behavioral-variant FTD; CVMSE, cross-validation mean squared error; FTD, frontotemporal
degeneration; naPPA, non-fluent/agrammatic variant PPA; PPA, primary progressive apha-
sia; svPPA, semantic variant PPA.
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1 For parsimony we refer to “voxelwise” analyses, but this also applies to mass-
univariate surface-based analyses.
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63 functionally relevant areas or the concentration of pathological change
64 in a disease under study. These issues motivate the use of data-driven
65 ROIs (DD-ROIs) that can be defined automatically on different popula-
66 tions of images, have soft boundaries instead of the hard labeling of
67 most manual label sets, and can be optimized based on criteria other
68 than visual anatomical boundaries. Such approaches have been used
69 for automated diagnosis of Alzheimer's disease (Klöppel et al., 2008)
70 and the classification of primary progressive aphasia variants (Wilson
71 et al., 2009). Variability of white matter across individuals has also
72 been suggested to impact language performance (Berthier et al., 2012;
73 Flöel et al., 2009). Another important issue with ROI studiesQ3 of white
74 matter is the lack of available labels: while there are several dense
75 parcellations of cortical gray matter available to researchers, there are
76 few white matter atlases and those that are available focus on major
77 tracts that can be delineated using diffusion tensor imaging.
78 In this report, we use a multivariate approach that aims to integrate
79 neuroimagingmeasures of graymatter andwhitematter in order to de-
80 fine a large-scale neural network that accounts for linguistic perfor-
81 mance. This approach relies on “eigenanatomy” (Avants et al., 2012a;
82 McMillan et al., 2013b, 2014), which is a recently proposed algorithm
83 for generating DD-ROIs. These soft ROIs are defined automatically by
84 maximizing the covariance of voxel-wise measurements normalized
85 to template space and collected into a matrix representation. There is
86 no need for prior manual labeling of the subject images and one only
87 needs to define an anatomical domain of interest in the template, for ex-
88 ample cortical gray matter for cortical thickness and white matter for
89 diffusion-tensor statistics. Eigenanatomy also addresses the need to
90 take into account spatial smoothness in the ROIs. Voxelwise approaches
91 do this in a post-hoc manner by considering clusters of contiguous re-
92 sults. More recent multivariate approaches take spatial dependency as
93 a given, and seek to capitalize on this from the outset. We view this as
94 a sensible assumption, given the continuous nature of the neural tissue,
95 and the fact that processes such as neural development, age-related cor-
96 tical thinning, and graymatter loss due to neurodegenerative disease all
97 show a significant degree of spatial localization. By capitalizing on these
98 dependencies, we should be able to better characterize variations in
99 brain shape and tissue structure. Further, theoretical arguments suggest
100 that exploiting prior knowledge when solving challenging optimization
101 problems fundamentally improves results in terms of performance,
102 stability and interpretability (Wolpert and Macready, 1997).
103 In combination with eigenanatomy dimensionality reduction, we
104 apply a model selection procedure to determine which DD-ROIs in
105 graymatter andwhitematter form themost efficient regressionmodels
106 of behavioral measures. This approach combines information from
107 multiple imaging modalities in a principled manner within a single
108 regression framework while maintaining the interpretability of classic
109 regression models. Although in theory researchers certainly appreciate
110 the joint contribution of gray matter and white matter integrity to
111 behavioral performance, in practice it has proven difficult to study
112 these at the same time in the same set of subjects. In particular, it has
113 been challenging to quantitatively evaluate the relative contribution of
114 gray matter and white matter to behavior: if a patient has damage to
115 both, which is the better predictor of performance?
116 To demonstrate the utility of ourmultivariate approach, we focus on
117 the neural basis of language limitations in patients with frontotemporal
118 degeneration (FTD). The two most common forms of FTD yield either a
119 language disorder, primary progressive aphasia (PPA) (Gorno-Tempini
120 et al., 2011), or a disorder of personality, social comportment, and exec-
121 utive dysfunction, behavioral-variant FTD (bvFTD) (Rascovsky et al.,
122 2011).Within PPA there is a semantic variant (svPPA) that is character-
123 ized by difficulty with naming, word meaning, and object knowledge.
124 This variant has been associated with considerable atrophy in the ante-
125 rior and ventral temporal lobe, more prominently on the left than the
126 right, as well as disease in uncinate and inferior longitudinal fasciculi
127 projections (Mahoney et al., 2013; Whitwell et al., 2010). There is also
128 a non-fluent/agrammatic variant (naPPA), involving slowed, effortful

129speech with grammatical difficulty and this has been associated with
130left-lateralized frontal and anterior–superior temporal cortical regions
131and prominent white matter disease in corpus callosum and inferior
132frontal–occipital fasciculus (Grossman, 2012; Grossman et al., 2012;
133Mahoney et al., 2013). bvFTD is not associated with an obvious aphasia,
134though executive-social limitations can have consequences on language
135processing (McMillan et al., 2013a), and these patients have graymatter
136frontal atrophy that is most prominent in ventral and medial frontal
137regions and extends into dorsolateral frontal areas, with associated dis-
138ease in white matter projections from these areas (Lillo et al., 2012;
139Zhang et al., 2013).
140Given the distributed localization of disease within the FTD variants
141we hypothesize that distinct large-scale neural networks contribute to
142patients' language limitations. Specifically, we focus on verbal fluency.
143This is a complex task that involves mental search through the lexicon
144of words that meet the criteria of a category. This process requires con-
145ceptual knowledge of word meanings, lexical retrieval, and executive
146resources involving a flexible mental search strategy. Verbal fluency
147tasks are common neuropsychological measures that can be adjusted
148to stress different cognitive processes and thus place different demands
149on a large-scale neuroanatomical network. For example, a category flu-
150ency task (“Name asmany animals as you can”) emphasizes knowledge
151of lexical and conceptual information. By contrast, a letter fluency task
152(“Name asmanywords as you can that beginwith the letter F”) requires
153lexical information and additionally requires an advanced executive
154search strategy to search through all words that begin with a specific
155letter. In the context of FTD patients, svPPA patients havemore difficulty
156with category fluency than Q4letter fluency and this has been associated
157with temporal cortex disease (Libon et al., 2009a). However, letter flu-
158ency appears to be more associated with frontal cortex disease in FTD
159and is compromised in bvFTD and nvPPA (Libon et al., 2009a). Assess-
160ments of gray matter regions contributing to verbal fluency tasks have
161been performed using a priori regions of interest (Amunts et al., 2004)
162or regression analyses using voxel-based morphometry (Libon et al.,
1632009b).We are unaware of investigations evaluating the relative contri-
164butions of gray matter and white matter disease to verbal fluency defi-
165cits in FTD.
166Together, we hypothesize that our novel multivariate approach and
167model selection procedure will reveal a large-scale neural network that
168supports verbal fluency, including fronto-temporal gray matter regions
169as well as white matter projections between these brain regions, and
170that the cortical-white matter network implicated in performance will
171be tailored to the specific task. We test this in a multimodal imaging
172study of FTD. These observations would provide proof-of-concept
173evidence for utilizing this approach to better understand the relative
174contributions of gray matter and white matter in the context of cog-
175nitive neuroscience, andwould improve our understanding of brain–
176behavior relationships in neurodegenerative conditions like FTD.

177Materials and methods

178Participants

179We recruited 54 patients from the Penn Frontotemporal Degenera-
180tion Center and Hospital of the University of Pennsylvania Cognitive
181Neurology Clinic who were native-English speakers and clinically-
182diagnosed with FTD by a board-certified neurologist using published
183criteria of either PPA (Gorno-Tempini et al., 2011) or bvFTD (Rascovsky
184et al., 2011). Other causes of dementia were excluded by clinical exam,
185blood and neuroimaging tests. Exclusion criteria included other neuro-
186logic, psychiatric or medical conditions that can result in cognitive
187change. Some patients may have been on a small, stable dose of a
188non-sedating neuroleptic or anti-depressant medication. We also re-
189cruited 15 healthy older adults who were demographically comparable
190in age and education relative to the patient cohort. All subjects had T1-
191and diffusion-weighted structural MRI scans. Thirty-eight subjects
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