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Substantial evidence indicates that major psychiatric disorders are associated with distributed neural
dysconnectivity, leading to a strong interest in using neuroimaging methods to accurately predict disorder status.
In this work, we are specifically interested in a multivariate approach that uses features derived from whole-
brain resting state functional connectomes. However, functional connectomes reside in a high dimensional
space, which complicates model interpretation and introduces numerous statistical and computational chal-
lenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spa-
tial structure of the connectomes. We propose a regularization framework where the 6-D structure of the
functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused
Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based,
allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet
regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded fea-
ture selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the
classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with
very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficient-
ly in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on
simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can
identify predictive regions that are spatially contiguous in the 6-D “connectome space,” offering an additional
layer of interpretability that could provide new insights about various disease processes.

© 2014 Elsevier Inc. All rights reserved.
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Introduction 2013; Fox and Greicius, 2010). In this article, we define the function-

al connectomes as the cross-correlation matrix that results from

There is substantial interest in establishing neuroimaging-based bio-
markers that reliably distinguish individuals with psychiatric disorders
from healthy individuals. Towards this end, neuroimaging affords a va-
riety of specific modalities including structural imaging, diffusion tensor
imaging (DTI) and tractography, and activation studies under condi-
tions of cognitive challenge (i.e., task-based functional magnetic reso-
nance imaging (fMRI)). In addition, resting state fMRI has emerged as
a mainstream approach that offers robust, sharable, and scalable ability
to comprehensively characterize patterns of connections and network
architecture of the brain.

Recently a number of groups have demonstrated that substantial
quantities of discriminative information regarding psychiatric diseases
reside in resting state functional connectomes (Castellanos et al.,
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parcellating the brain into hundreds of distinct regions, and computing
cross-correlation matrices across time (Varoquaux and Craddock,
2013). Even with relatively coarse parcellation schemes with several
hundred regions of interest (ROIs), the resulting connectomes encom-
pass hundreds of thousands of connections or more. The massive size
of connectomes offers new possibilities, as patterns of connectivity
across the entirety of the brain are represented. Nonetheless, the high
dimensionality of connectomic data presents critical statistical and
computational challenges. In particular, mass univariate strategies
that perform separate statistical tests at each edge of the connectome
require excessively stringent corrections for multiple comparisons.
Multivariate methods are promising, but these require specialized
approaches in the context where the number of parameters dominate
the number of observations, a setting commonly referred to as the
“large p small n problem,” denoted p > n (Biihlmann and van de
Geer, 2011; West, 2003).

In the p > n regime, it is important to leverage any potential struc-
ture in the data, and sparsity is a natural assumption that arises in many
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applications (Candes and Wakin, 2008; Fan and Lv, 2010). For example,
in the context of connectomics, it is reasonable to believe that only a
fraction of the functional connectome is impacted under a specific disor-
der, an assumption that has been supported in nearly all extant studies
(see Castellanos et al., 2013). Furthermore, when sparsity is coupled
with a linear classifier, the nonzero variables can be interpreted as
pairs of brain regions that allow reliable discrimination between con-
trols and patients. In other words, sparse linear classifiers have the po-
tential of revealing connectivity-based biomarkers that characterize
mechanisms of the disease process of interest (Atluri et al., 2013).

The problem of identifying the subset of variables relevant for pre-
diction is called feature selection (Guyon and Elisseeff, 2003; Jain
et al., 2000), which can be done in a univariate or a multivariate fashion.
In the univariate approach, features are independently ranked based on
their statistical relationship with the target label (e.g., two sample t-test,
mutual information), and only the top features are submitted to the
classifier. While this method is commonly used (Sripada et al., 2013b;
Zeng et al., 2012), it ignores the multivariate nature of fMRI. On the
other hand, multivariate approaches such as recursive feature elimina-
tion (Guyon and Elisseeff, 2003) can be used to capture feature interac-
tions (Craddock et al., 2009; Dai et al., 2012), but these methods are
computationally intensive and rely on suboptimal heuristics. However,
a more serious shortcoming common to all the methods above is that
outside of sparsity, no structural information is taken into account. In
particular, we further know that functional connectomes reside in a
structured space, defined by pairs of coordinate points in 3-D brain
space. Performing prediction and feature selection in a spatially in-
formed manner could potentially allow us to draw more neuroscien-
tifically meaningful conclusions. Fortunately, regularization methods
allow us to achieve this in a natural and principled way.

Regularization is a classical technique to prevent overfitting (James
and Stein, 1961; Tikhonov, 1963), achieved by encoding prior knowl-
edge about the data structure into the estimation problem. Sparsity
promoting regularization methods, such as Lasso (Tibshirani, 1996)
and Elastic-net (Zou and Hastie, 2005), have the advantage of
performing prediction and feature selection jointly (Grosenick et al.,
2008; Yamashita et al., 2008); however, they also have the issue of
neglecting additional structure the data may have. Recently, there has
been strong interest in the machine learning community in designing
a convex regularizer that promotes structured sparsity (Chen et al.,
2012; Mairal et al., 2011; Micchelli et al., 2013), which extends the stan-
dard concept of sparsity. Indeed, spatially informed regularizers have
been applied successfully in task-based detection, i.e., decoding, where
the goal is to localize in 3-D space the brain regions that become active
under an external stimulus (Baldassarre et al., 2012; Gramfort et al.,
2013; Grosenick et al., 2013; Jenatton et al., 2012; Michel et al., 2011).
Connectomic maps exhibit a rich spatial structure, as each connection
comes from a pair of localized regions in 3-D space, giving each connec-
tion a localization in 6-D space (referred to as “connectome space” here-
after). However, to the best of our knowledge, no framework currently
deployed exploits this spatial structure in the functional connectome.

Based on these considerations, the main contributions of this paper
are two-fold. First, we propose to explicitly account for the 6-D spatial
structure of the functional connectome by using either the fused Lasso
(Tibshirani et al., 2005) or the GraphNet regularizer (Grosenick et al.,
2013). Second, we introduce a novel scalable algorithm based on the
classical alternating direction method (Boyd et al., 2011; Gabay and
Mercier, 1976; Glowinski and Marroco, 1975) for solving the non-
smooth, large-scale optimization problem that results from these
spatially-informed regularizers. Variable splitting and data augmenta-
tion strategies are used to break the problem into simpler subproblems
that can be solved efficiently in closed form. The method we propose
only restricts the loss function to be convex and margin-based, which
allows non-differentiable loss functions such as the hinge-loss to be
used. This is important, since using the fused Lasso or the GraphNet
regularizer with the hinge-loss function leads to a structured sparse

support vector machine (SVM) (Grosenick et al., 2013; Ye and Xie,
2011), where feature selection is embedded (Guyon and Elisseeff,
2003), i.e., feature selection is conducted jointly with classification.
We demonstrate that the optimization algorithm we introduce can
solve both fused Lasso and GraphNet regularized SVM with very little
modification. To the best of our knowledge, this is the first application
of structured sparse methods in the context of disease prediction
using functional connectomes. Additional discussions of technical con-
tributions are reported in the Optimization section. We perform exper-
iments on simulated connectomic data and resting state scans from a
large schizophrenia dataset to demonstrate that the proposed method
identifies predictive regions that are spatially contiguous in the
connectome space, offering an additional layer of interpretability that
could provide new insights about various disease processes.

Notation

We let lowercase and uppercase bold letters denote vectors and
matrices, respectively. For every positive integer n € N, we define an
index set [n] := {1,...,n},and also let I, € R" * " denote the identity ma-
trix. Given a matrix A € R" * 7, we let AT denote its matrix transpose,
and A" denote its Hermitian transpose. Given w, v € R", we invoke
the standard notation (w,v) := > _"_ ;w,v; to express the inner product
in R™. We also let |lw]|, = (3_"— ywF)"? denote the /,-norm of a vector,
p > 1, with the absence of subscript indicating the standard Euclidean
norm, || - || = |- ]2

Material and methods
Defining functional connectomes

In this work, we produced a whole-brain resting state functional
connectome as follows. First, 347 non-overlapping spherical nodes are
placed throughout the entire brain in a regularly-spaced grid pattern,
with a spacing of 18 x 18 x 18 mm; each of these nodes represents a
pseudo-spherical ROI with a radius of 7.5 mm, which encompasses
33 voxels (the voxel size is 3 x 3 x 3 mm). For a schematic representa-
tion of the parcellation scheme, see Fig. 1. Next, for each of these nodes,
a single representative time-series is assigned by spatially averaging
the BOLD signals falling within the ROIL Then, a cross-correlation matrix
is generated by computing Pearson's correlation coefficient between
these representative time-series. Finally, a vector x of length (3*7) =
60,031 is obtained by extracting the lower-triangular portion of the
cross-correlation matrix. This vector ¥ € R®*%3! represents the whole-
brain functional connectome, which serves as the feature vector for dis-
ease prediction.

The grid-based scheme for brain parcellation used in this work pro-
vides numerous advantages. Of note, this approach has been validated
in previous studies (Sripada et al., 2013a, 2013b, 2014). Furthermore,
the uniformly spaced grid is a good fit with our implementation of
fused Lasso and GraphNet, as it provides a natural notion of nearest-
neighbor and ordering among the coordinates of the connectome. This
property also turns out to be critical for employing our optimization
algorithm, which will be discussed in the Optimization section. This is
in contrast to alternative approaches, such as methods that rely on ana-
tomical (Tzourio-Mazoyer et al., 2002; Zeng et al., 2012) or functional
parcellation schemes (Dosenbach et al., 2010). Anatomical parcellations
in particular have been shown to yield inferior performance to alterna-
tive schemes in the literature (Power et al., 2011). Additionally, grid-
based approaches provide scalable density: there is a natural way to
increase the spatial resolution of the grid when computational feasibil-
ity allows. In particular, to increase node density, one could reduce the
inter-node distance and also reduce the node size such that suitable
inter-node space remains. This scalable density property turns out to
be quite important, as our grid-based scheme is considerably more
dense than standard functional parcellations (e.g., Dosenbach et al.,



Download English Version:

https://daneshyari.com/en/article/6027202

Download Persian Version:

https://daneshyari.com/article/6027202

Daneshyari.com


https://daneshyari.com/en/article/6027202
https://daneshyari.com/article/6027202
https://daneshyari.com

