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This paper presents a method for the statistical analysis of the associations between longitudinal neuroimaging
measurements, e.g., of cortical thickness, and the timing of a clinical event of interest, e.g., disease onset. The
proposed approach consists of two steps, the first of which employs a linear mixed effects (LME) model to
capture temporal variation in serial imaging data. The second step utilizes the extended Cox regression model
to examine the relationship between time-dependent imaging measurements and the timing of the event of
interest. We demonstrate the proposed method both for the univariate analysis of image-derived biomarkers,
e.g., the volume of a structure of interest, and the exploratory mass-univariate analysis of measurements
contained in maps, such as cortical thickness and gray matter density. The mass-univariate method employs a
recently developed spatial extension of the LME model. We applied our method to analyze structural measure-
ments computed using FreeSurfer, a widely used brain Magnetic Resonance Image (MRI) analysis software
package. We provide a quantitative and objective empirical evaluation of the statistical performance of the
proposedmethod on longitudinal data fromsubjects suffering fromMild Cognitive Impairment (MCI) at baseline.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Medical events, such as the onset of disease, represent major land-
marks in the course of a patient's clinical history. A significant portion
of biomedical research is dedicated to studying the risk factors associated
with these events, aiming to predict, delay and ultimately prevent their
occurrence.

In recent decades, neuroimaging has accelerated the study of brain-
related clinical conditions. A classical neuroimaging approach has been
to contrast measurements obtained from those who have experienced
the event (i.e., cases) with measurements from those who have not
(i.e., controls). This methodology has yielded reliable markers of
disease, e.g., (Jack et al., 2012),while providing insights about underlying
biological mechanisms, e.g. (Buckner et al., 2005; Sabuncu et al., 2012).

Yet, the classical case–control approach treats the two groups
as distinct entities and assumes a certain amount of within-group

homogeneity. This approach can therefore be limited when the control
group is a high-risk cohort, that is, when a significant proportion of
subjects have not yet experienced the event of interest but are likely
to do so in the not-too-distant future. Such “pre-event” cases, which,
in the absence of other information will be treated as controls, typically
fall in the gray area between a pure case and a pure control. Thus the
within-group homogeneity assumption is violated, which will in turn
impact statistical inference. Common examples for this are longitudinal
studies of populations that are at high risk for disease, based on
their genetic make-up (e.g., carriers of a faulty allele of the Huntingtin
gene in a Huntington's study (Albin et al., 1990)), familial history
(e.g., subjects who have a first-degree relative with schizophrenia
(Whitfield-Gabrieli et al., 2009)) or clinical presentation (e.g., subjects
with Mild Cognitive Impairment, or MCI, in an Alzheimer's study
(Forsberg et al., 2008)). These examples are particularly relevant to
drug trials focused on the pre-clinical or early phases of a disease and
thus target high-risk populations. In such scenarios, an inappropriate
statistical treatment of the group of subjects who have not been
observed to experience the event (diagnosis or conversion to disease)
during the follow-up period (sometimes referred to as “non-converters”)
can introduce bias into the analysis and/or reduce efficiency.

An alternative strategy that addresses this issue, directly models the
timing of the event of interest, while accounting for finite follow-up or
censoring. This is the event time (or survival) analysis approach
(Kleinbaum and Klein, 2012), which includes classical models such as
Cox proportional hazards regression (Cox, 1972). Standard event time
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analysis models have been applied in prior neuroimaging studies
(Desikan et al., 2009, 2010; Devanand et al., 2007; Geerlings et al.,
2008; Marcus et al., 2007; Sabuncu, 2013; Stoub et al., 2005; Tintore
et al., 2008; Vemuri et al., 2011) and have yielded novel insights about
various clinical conditions. Most of these prior studies have analyzed
associations between imaging measurements from a single baseline
visit and the timing of the event of interest identified via follow-up
clinical assessments. These analyses typically rely on survival models
(e.g., the standard Cox model) that assume the explanatory variables
are independent of time (gender, genetic marker, birth place, etc.).
The employedmodels are useful for constructing individualized survival
curves and making predictions about the timing of a future event.
Furthermore, they offer insights about the relationships between inde-
pendent variables and the event time. As such, survival models have
been used to draw conclusions about associations between neuroimag-
ing measurements (e.g., volume of a structure) and the clinical event
(e.g., disease onset). This type of inference, however, suffers from two
problems. Firstly, imaging measurements typically vary over time
(e.g., due to anatomical changes). Yet, interpretation of the standard
Cox model, for example, has to be done with respect to the baseline
imaging measurements only and not with respect to the dynamically
changing measurements. Secondly, in longitudinal designs that span
an extended time period, imagingmeasurements are likely to vary sub-
stantially over time, making it harder to detect associations between
baseline imaging markers and the clinical event.

Longitudinal neuroimaging (LNI) studies, where multiple serial
images are acquired for each participant, provide ameans to characterize
the temporal trajectories of imaging measurements. Furthermore LNI
studies can offer a substantial increase in statistical power for studying
imaging markers (Bernal-Rusiel et al., 2013a,b), while opening up
the possibility of examining the relationship between the temporal
dynamics of imaging markers and clinical variables (Sabuncu et al.,
2011). Today, the standard strategy for analyzing the association
between LNI data and the occurrence of a clinical event, such as disease
onset, is to perform a group comparison based ondichotomizing the sub-
jects into, for example, “converters” versus “non-converters” (Borgwardt
et al., 2011; Chetelat et al., 2005; Jack et al., 2008a; Morgan et al., 2011;
Sun et al., 2009). However, as we discussed above, this approach can
be sub-optimal, since the non-converter group likely includes subjects
who might convert beyond the study follow-up.

The core goal of this paper is to propose a powerful method for the
statistical analysis of the associations between longitudinal neuroimag-
ingmeasurements, e.g., of gray matter density or cortical thickness, and
the timing of a clinical event of interest, such as disease onset. The
proposed approach combines a linear mixed effects (LME) model that
captures the spatiotemporal correlation pattern in serial imaging data
(Bernal-Rusiel et al., 2013a,b; Verbeke and Molenberghs, 2000) and an
extended Cox regression model that allows the examination of associa-
tions between the time-dependent imaging measurements and the
timing of a clinical event (Kleinbaum and Klein, 2012). Recent work
showed that such a joint analysis can reduce bias and increase statistical
efficiency by exploiting all available information (Tsiatis and Davidian,
2004).

We demonstrate the proposed method both for the univariate and
mass-univariate analysis of imaging measurements automatically
computed with FreeSurfer, a widely used brain Magnetic Resonance
Image (MRI) data analysis software package (Dale et al., 1999; Fischl,
2012; Fischl and Dale, 2000; Fischl et al., 1999a,b).We include a quanti-
tative and objective empirical evaluation of the statistical performance
of the proposed method based on publicly available data (the
Alzheimer's disease neuroimaging initiative, ADNI3) from a group
of subjects with Mild Cognitive Impairment (MCI) (Gauthier et al.,

2006), a clinically defined condition associated with high-risk incipient
dementia. Our experiments revealed that the proposed method
offers a substantial increase in statistical efficiency relative to a “two-
sample” benchmark method that compares those who convert from
MCI to clinical AD against those who remain MCI through follow-
up; and a classical Cox regression analysis that employs only baseline
scans.

The paper is organized as follows. The Cox proportional hazards
model and its extension section and the Linear mixed effects models
for longitudinal data section review the Cox proportional hazards and
linear mixed effects models, respectively. The Proposed strategy for
joint analysis of event time and LNI data section presents the proposed
method that unifies these two frameworks. The Alternative methods
section describes the alternative analysis strategies that we will use to
benchmark our experimental results. The ADNI data section offers a
description of the data used in the experiments and the Statistical
models section details the statistical analyses conducted on these data.
In the Experimental results section, we present experimental results
that illustrate the proposed joint modeling approach and compare it
against benchmarks. Finally, the Discussion section provides a discus-
sion of the main experimental findings and the Conclusions section
closes with concluding remarks.

Material and methods

The Cox proportional hazards model and its extension

In this section, we provide a brief overview of the classical Cox
proportional hazards model (Cox, 1972) and its extension for time-
varying explanatory (independent) variables. For a detailed treatment,
the reader is referred to dedicated texts, such as Kleinbaum and Klein
(2012).

A core component of event time models is the so-called hazard
function h(t), which is the instantaneous probability of experiencing
the event of interest (e.g., disease onset), given no event up to time t.
The hazard function is mathematically defined as:

h tð Þ ¼ lim
dt→0

P t ≤ T b t þ dtjT ≥ tð Þ
dt

;

where T is the random variable that represents the time of event and p(.
|.) denotes conditional probability. The classical Cox model assumes that
the hazard function of a samplewith p time-independent explanatory var-

iables X ¼ X1;X2;…Xp

� �
can be expressed as:

h t;Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

αiXi

 !
; ð1Þ

where h0(t) is the so-called baseline hazard function andα=(α1,…,αp)
is the coefficients associated with the explanatory variables. This model
assumes that the hazard function can be written as a product of two
factors: one that varies with time but is independent of X, and another
that is a function of the time-independent explanatory variables X
and thus is fixed over time. The foundation of the classical Cox model is
the proportional hazards assumption, i.e., the proportion of the hazard

functions of two samples is constant over time:
h t;X1ð Þ
h t;X2ð Þ ¼ exp

∑
p

i¼1
α X1

i −X2
i

� �� �
¼ const: , where Xj is the independent variables of

the j'th sample.
A popular strategy to estimate the coefficients α is the so-called

partial likelihoodmaximizationmethod (Cox, 1972, 1975). In particular,
the partial likelihood is expressed as a product of K terms, each corre-
sponding to the likelihood of an observed event computed based on
the time of occurrence (i.e., there are K events observed during the3 http://tinyurl.com/ADNI-main.
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