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The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the
duration of these stages, and how these stages are related to the learning of a new mathematical competence.
Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found
that participants went through 5 major phases in solving a class of problems: A Define Phase where they identi-
fied the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase
where they performed the necessary arithmetic calculations, a Transform Phase where they performed any
mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is charac-
terized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions,
the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in math-
ematical and response regions, and the Respond phase by activity inmotor regions. The duration of the Compute
and Transform Phaseswere the only ones that variedwith condition. Two features distinguished themastery tri-
als on which participants came to understand a new problem type. First, the duration of late phases of the prob-
lem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and
angular gyrus (AG), regions associatedwithmetacognition. This indicates the importance of reflection to success-
ful learning.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The past decade has seen a considerable growth in the understanding
of the neural basis of certain aspects ofmathematics. The greatest amount
of research has gone into understanding the role of various parietal re-
gions in basic arithmetic tasks and their role in normal and abnormal de-
velopment (e.g., Ansari and Dhital, 2006; Arsalidou and Taylor, 2011;
Butterworth et al., 2011; Castelli et al., 2006; Molko et al., 2003).
Dehaene's (1997) triple-code theory identifies three regions as critical
to the representation of number: the horizontal intraparietal sulcus that
processes numerical quantity, the angular gyrus that is involved in the
verbal processing of numbers, and the fusiformgyrus that processes num-
ber form. In addition, the prefrontal cortex is particularly involved inmore
advanced tasks involving topics like algebra, geometry, or calculus (e.g.,
Krueger et al., 2008; Qin et al., 2004). One prefrontal region of interest is
the lateral inferior prefrontal cortex that is involved in retrieval of arith-
metic facts and semantic facts (Danker and Anderson, 2007; Dehaene
et al., 1999;Menon et al., 2000).More dorsal andmore anterior prefrontal
regions become engaged as the problem solving gets more complicated
(Wintermute et al., 2012).

Most of this past research has looked at the execution of well-
established procedures. The current research investigated how mathe-
matical knowledge becomes “alive” and extends to solving novel prob-
lems. We taught participants a new mathematical skill (which is really
just equation-solving in disguise) and then challenged them to extend
what they had learned to novel transfer problems. In order to identify
when the key cognitive events occurred we needed to develop new
methods that deal with the variability in complex mathematical problem
solving.

A complex skill like algebra problem solving involves a rich mixture
of perceptual, cognitive, and motor activities. For instance, when ma-
nipulating an equation in traditional paper and pencil mode, a student
has to scan past lines of equations, identify the next critical transforma-
tion, determine what the new equation will be, and then write that
equation. In more modern computer interfaces and tutoring systems,
handwriting can be removed but there still are the same basic steps
with computer gestures replacing handwriting. This complexity and
mixture of activities makes it difficult to identify when the critical cog-
nitive events are taking place. This paper will show that it is possible to
analyze individual trials and identify the critical events by combining
multivariate pattern analysis (MVPA—e.g., Norman et al., 2006;
Pereira et al., 2009) and Hidden Markov Model (HMM) algorithms
(Rabiner, 1989). The MVPA recognizes the mental states and the
HMM recognizes the sequence of states.
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Our past work (Anderson et al., 2010, 2012a, 2012b) trained an
HMM and an MVPA classifier on the states with one set of data and
then tested it with another set. This required that the states be known
in advance and marked in the training set. More recently, Anderson
and Fincham (2013) showed that this approach could be extended to
discoverwhat the states were solely based on the data, without needing
the state structure to be specified in advance. Their demonstration in-
volved using only imaging data, but the current paper will show that
this approach becomes more powerful when the imaging data are
merged with behavioral data. These methods can analyze problem-
solving episodes that involve up to 60 s of mixed activities and identify
the few key moments in the episodes where the most critical cognitive
events are happening.

This paper is divided into four parts. Part 1 describes an imaging ex-
periment studying how participants learn new mathematical problem
solving skills. Part 2 explains the MVPA–HMM method and describes
the states that it discovers for this experiment. Part 3 uses the inferred
states to gain a deeper understanding of task performance at both be-
havioral and neural levels. Finally, Part 4 interprets our results and
their implications.

A study of mathematical learning and transfer

We have developed a data-flow isomorph of school algebra that has
allowed us to study college students learning algebra all over again
(Brunstein et al., 2009; Lee et al., 2011). Because it is a laboratory inven-
tion and not a real mathematics topic, we have been free to explore a
range of instructional variation that might not be appropriate or ethical
for students learning real algebra. The data for this paper come from an
experiment (Lee et al., in press2) that involved a contrast between
learning by discovery and learning by direct instruction. Participants
learned how to solve the problems in one session outside the scanner
and then had to transfer this knowledge to solving new, challenging
problems in the scanner. Discovery participants were somewhat slower
in mastering the material in the learning session but there were no dif-
ferences (behavioral or imaging) between instruction and discovery
participants in the transfer session. Lee et al. analyzed the instructional
effects in learning and their disappearance in transfer. Here we are in-
terested in analyzing the common processes by which participants
approached these transfer problems andwill pool the data from the dif-
ferent instructional groups.

Fig. 1 shows examples of the data-flow structures thatwe used. They
consist of a set of boxes containing tiles with numbers or operators. Ar-
rows connect boxes to tiles. In data-flow representations a number

flows from a top box through a set of arithmetic operations to a bottom
box. If that number is unknown, the data-flow structure is equivalent to
an algebraic equation with a single variable. For instance, Fig. 1a is the
data-flow equivalent of 6 ∗ (7 − x) = 24. The task is to determine
what values to fill into the empty tiles in the boxes. For a linear structure
like Fig. 1a, the values can be determined by simply “propagating” the
number up from the bottom and performing the arithmetic operations.
The solution (as illustrated in Fig. 1b) involves placing 4 in the empty
tile above the bottom box (since 6 ∗ 4 = 24), then placing 3 in the
empty tile above it (because 7 − 3 = 4), and finally placing 3 in the
top box (equivalent to solving as x = 3). Most participants find solving
these problemsby this propagation strategy easy and intuitive (one par-
ticipant described it as similar to playing Sudoku). However, when
problems cannot be solved by this simple propagation strategy, partici-
pants tend to have difficulty understanding the problem structure and
figuring out a procedure for solving the problem.

One class of difficult problems involves the unknown value flowing
downmultiple paths. Fig. 1c illustrates a simple case of such a problem,
which is equivalent to solving an equationwithmultiple appearances of
the variable. The diagram in Fig. 1c is equivalent to the algebraic expres-
sion, (5 − x) + (5 ∗ x) = 29. In the diagram an unknown value flows
down into the two tiles in a box below, which are summed to produce
a result of 29. Because two paths converge in a single result, the propa-
gation strategy does not work. Theway to solve this problemwithin the
rules of the system is to transform the graph in Fig. 1c into the linear
form in Fig. 1d (equivalent to 4x+5=29), where this simple propaga-
tion procedure is possible again as illustrated in Fig. 1e. This transforma-
tion step, called linearization, is a major conceptual hurdle in this
artificial curriculum. It corresponds to collection of variables and con-
stants in regular algebra, which in combinationwith distribution causes
some difficulty when regular algebra is taught in school.

The most difficult step in a Linearize problem is determining the
values to enter into the linearized form—for instance, the 4 and the 5
in Fig. 1d. Participants in this experiment had spent thefirst day, outside
of the scanner, mastering this linearization step on relatively simple
problems like Fig. 1c. On the second day, they went into the scanner
and solved Linearize problems that posed new challenges. Fig. 2
shows two examples of such challenging problems. They would see
the problem on the left with the multiple boxes highlighted that had
been replaced by a linear structure on the right. Their task was to
enter into the two blue tiles the numbers that would make the left
and right structures equivalent.

The major experimental manipulation in the transfer section in-
volved the type of problem participants were asked to solve. The prob-
lems were either

1. Graphic problems: These involved more complex graph structures
than participants had solved up until this point. Fig. 2a illustrates a

2 This paper and entire experimental materials are available at https://www.dropbox.
com/sh/bya83pfytbixzzf/OLMbG0OVX4.

Fig. 1.Data flowgraphswhere an unknownnumberflows down from the top box. Reddenotes numbers added to the diagramby the participant. (a) A simple Propagate problemequivalent to
6 ∗ (7− x)=24; (b) The solution for (a)where 4 is enteredbecause 6 ∗4=24and3 is enteredbecause 7−3=4; (c)A Linearize problem, equivalent to (5− x)+(5 ∗ x)=29,with twopaths
which must be converted into Propagate form; (d) The Propagate equivalent of (c) since 5− x + 5x= 4x + 5; (e) The solution for (d) since 5 + 24= 29 and 4 ∗ 6 = 24.
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