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19Time-varying connectivity methods are increasingly used to study directed interactions between brain regions
20from electrophysiological signals. These methods often show good results in simulated data but it is unclear to
21what extent connectivity results obtained from real data are physiologically plausible. Here we introduce a
22benchmark approach using multichannel somatosensory evoked potentials (SEPs Q3) measured across rat cortex,
23where the structural and functional connectivity is relatively simple and well-understood. Rat SEPs to whisker
24stimulation are exclusively initiated by contralateral primary sensory cortex (S1), at known latencies, and with
25activity spread from S1 to specific cortical regions. This allows for a comparison of time-varying connectivity
26measures according to fixed criteria. We thus evaluated the performance of time-varying Partial Directed
27Coherence (PDC) and the Directed Transfer Function (DTF), comparing row- and column-wise normalization
28and the effect of weighting by the power spectral density (PSD). The benchmark approach revealed clear
29differences between methods in terms of physiological plausibility, effect size and temporal resolution. The
30results provide a validation of time-varying directed connectivity methods in an animal model and suggest a
31driving role for ipsilateral S1 in the later part of the SEP. The benchmark SEP dataset is made freely available.

32 © 2014 Published by Elsevier Inc.
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37Q4 Introduction

38 Sensory, cognitive and motor processing consists of dynamically
39 coordinated activity in functional networks of brain regions. In such
40 large-scale networks the activity in one region may drive activity in
41 other regions, and which regions drive one another varies with time
42 and task. A better understanding of directed interactions and their
43 dynamics may help to better comprehend sensory and cognitive
44 processing in both health and disease (Bressler and Seth, 2011;
45 Bressler, 1995). Reliable time-varying methods are therefore needed
46 that can identify from electrophysiological signals what the important
47 drivers of cortical networks are, which regions they most strongly
48 drive to, and how driving from each region varies with time.
49 Various time-varying methods exist that can model directed
50 interactions from non-stationary electrophysiological recordings
51 (Astolfi et al., 2008; Ding et al., 2000; Hesse et al., 2003; Hu et al.,
52 2012; Lin et al., 2009; Milde et al., 2010; Porcaro et al., 2013;
53 Sommerlade et al., 2012; van Mierlo et al., 2011; Wilke et al., 2007).
54 Such methods may correctly represent directed interactions in
55 simulated data but when applied to human data it is often unclear

56whether connectivity results correctly reflect the underlying phy-
57siology. This is because EEG andMEG signals at each electrode or source
58point reflect activity from multiple regions to unknown extents: the
59problem of volume conduction (Gómez-Herrero et al., 2008; Haufe
60et al., 2013; Nolte et al., 2004; Nunez and Srinivasan, 2006). In addition,
61large-scale human functional connectivity and its dynamics are not
62well-understood so that connectivity results cannot be easily compared
63to the underlying physiology, even in intracranial recordings.
64We here use multichannel electrophysiological recordings from rats
65as a benchmark to test the performance of directed, time-varying
66connectivity methods. In rat cortex structural and functional con-
67nectivity are simpler than in human, and better understood because
68more direct electrophysiological measures are possible in animal
69models. After unilateral whisker stimulation the spatiotemporal
70dynamics of evoked activity follows a known pattern that reflects the
71underlying structural connectivity (Quairiaux et al., 2011). Rat SEPs
72can therefore provide a good benchmark to evaluate results from
73time-varying connectivity estimators, for three reasons in particular.
74Firstly, the SEP is entirely driven by the primary sensory cortex
75contralateral (cS1) to whisker stimulation (Farkas et al., 1999; Shuler
76et al., 2001). Secondly, activity in cS1 is known to start at around 5 ms
77after whisker stimulation and ceases at around 25 ms, as shown by
78intracranial recordings in anesthetized animals (Armstrong-James
79et al., 1992; Constantinople and Bruno, 2013; Quairiaux et al., 2011).
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80 Outside these latencies driving from cS1 to other regions is physiologi-
81 cally not plausible. Thirdly, cS1 has structural connections to specific
82 regions in both hemispheres (Colechio and Alloway, 2009; Hoffer
83 et al., 2003; Lee et al., 2011; Smith and Alloway, 2013; Zakiewicz et al.,
84 2011). In line with structural connectivity, contralateral parietal and
85 frontal sensory-motor regions become active immediately after cS1
86 (see Fig. 1, dark blue and orange traces).
87 Out of the numerous published Granger-causal methods we here
88 selected time-varying PDC and DTF for comparison (Kaminski and
89 Blinowska, 1991; Baccalá and Sameshima, 2001; Astolfi et al., 2008).
90 These methods, based on multivariate autoregressive modeling, are
91 variations within the Wiener–Granger causality theoretic framework,
92 quantifying how activity at one region predicts activity at other regions
93 (Bressler and Seth, 2011; Granger, 1969).
94 PDC is a linear multivariate method that separates direct from indi-
95 rect connections and can correctly identify interactions even in relative-
96 ly noisy data (Astolfi et al., 2006, 2007b; Baccalá and Sameshima, 2001;
97 Fasoula et al., 2013; Florin et al., 2011). Stability and interpretability of
98 PDC results are achieved through normalization. The original PDC defi-
99 nition normalizes the outgoing connection strengths fromeach region, a
100 column-wise normalization that bounds the sum of the outflows per
101 region to one (Baccalá and Sameshima, 2001). This bounding however,

102may compromise the sensitivity to outflows and therefore a normaliza-
103tion by inflowsmay be preferred. This row-wise normalization is part of
104the original DTF definition and has also been applied to PDC (Astolfi
105et al., 2007a; Kaminski and Blinowska, 1991; Kus et al., 2004). Row-
106wise normalized methods may be advantageous in studying neural
107systems because they allow more variability in outgoing connection
108strengths, but to our knowledge a direct comparison of the effects of
109row- and column-wise normalizations in real data is so far missing.
110PDC is a measure in the frequency domain that quantifies to what
111degree a power change at frequency f predicts a power change in
112another region at f. That is, PDC represents a directional rate of change
113in the spectral power between two regions: large PDC(f) indicates that
114increased spectral power in the source region yields a large increase
115in the destination region (Schelter et al., 2009). However, the PDC
116calculation is independent of the signal spectral power, and therefore
117large PDC can occur from regions that show little spectral power, and
118vice versa. PDC values therefore lack a clear physiological interpretation
119(Baccalá and Sameshima, 2001; Faes et al., 2012). To increase the
120physiological interpretability we weigh PDC values by the instanta-
121neous power spectral density (PSD) in the source region. Thisweighting
122reflects the fact that activity in a source region is necessary, but not
123sufficient, in order for the source region to effectively drive activity in

Fig. 1. Large-scale SEPmapping afterwhisker stimulation (A) Amulti-electrode grid placed on the skull bone recorded unilateral SEPs across cortex. The hemisphere contralateral (Con) to
stimulation is shown on the left, ipsilateral (Ips) on the right. The electrode layout is shown belowwith color-coding used in all plots. (B) In the grand-average SEP (n=10), themaximum
voltage peak over cS1 (e4, dark green; mean 13.9 ms, 95% bootstrapped confidence intervals (CI) 13.1–14.9 ms) was quickly followed by peak activity over more parietal (e2, dark blue;
15.4 ms, CI 14.2–16.2 ms), frontal areas (e6, orange; 15.6 ms, CI 14.4–16.4 ms). At middle latencies the maximal activity was measured over iS1 (e12, green dotted line; 29.0 ms, CI
26.5–31.4 ms). Topographic layouts of the voltage potential (2D spline interpolation) are plotted below to illustrate large-scale activity spread. (C) Shows time-frequency plot of the
SEP for three nearby electrodes.
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