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38We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of
39the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI);
40clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles
41compactly using a path following points of highest density (maximum density path; MDP); and registration of
42these paths together using geodesic curve matching to find local correspondences across a population. We
43demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across
4450 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in
45the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics
46(TBSS) method. Our results show that the MDP representation reveals important parts of the white matter
47structure and considerably reduces the dimensionality over comparable fiber matching approaches.

48 © 2014 Elsevier Inc. All rights reserved.
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53 Introduction

54 Diffusion weighted imaging (DWI) measures the directional diffu-
55 sion of water through the brain in vivo. By following the dominant
56 directions of diffusion across the brain, whole-brain tractography
57 algorithms can reconstruct the brain's major white matter pathways,
58 extracting a vast number of fibers that are amenable to statistical
59 analysis. We can then study these white matter regions in individuals
60 and populations to better understand disease effects (Daianu et al.,
61 2013; Jahanshad et al., 2012b; Takahashi et al., 2002), changes in brain
62 microstructure and connectivity with age (Abe et al., 2002; Dennis

63et al., 2012), hemispheric differences (Jahanshad et al., 2010), sex differ-
64ences (Peled et al., 1998), and genetic influences (Jahanshad et al.,
652013a; Kochunov et al., 2010).
66High angular resolution diffusion imaging (HARDI) enables a
67more accurate representation of fiber directions compared to the
68more standard single-tensor model (Basser and Pierpaoli, 1996). The
69single-tensor model does not account for fiber crossing or mixing, but
70the orientation distribution function (ODF) (Tuch, 2004) can be derived
71from HARDI images to discriminate multiple fibers with different
72orientations passing through a voxel (Leow et al., 2009; Zhan et al.,
732010).
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74 The large number of fibers generated by the tractography algorithms
75 first needs to be clustered according to known anatomical pathways
76 before comparing them across subjects. A wealth of clusteringmethods
77 has been applied to tractography results including fuzzy clustering
78 (Shimony et al., 2002), normalized cuts (Brun et al., 2004), k-means
79 (O'Donnell and Westin, 2005), spectral clustering (O'Donnell et al.,
80 2006), Dirichlet distributions (Maddah et al., 2008), hierarchical cluster-
81 ing (Visser et al., 2011), a Gaussian process framework (Wassermann
82 et al., 2010b), and median filtering (Prasad et al., 2011a). Some of
83 these methods readily benefit from prior anatomical information pro-
84 vided by an atlas of likely locations of the tracts in the brain (Yendiki
85 et al., 2011), suggesting when to split or combine clusters to conform
86 to known anatomy. In one approach (Jin et al., 2011a,b, 2013), several
87 labeled atlases are deformed onto a fiber set extracted from a new
88 subject, and a fibermatching and voting process are used to help decide
89 the anatomical bundles to which the fibers belong.
90 Following clustering, several methods can be used for fiber bundle
91 matching. (Colby et al., 2011) use a parametric curve-based method to
92 resample fibers in a bundle based on shared seed points and then com-
93 pute correspondences from the resampling to create a representative
94 path for an individual or group. A similar re-sampling approach is
95 used in a method (Yeatman et al., 2012) that filters fiber bundles to
96 match a probabilistic atlas. (Corouge et al., 2006) analyze fiber bundles
97 by resampling and then aligning them across subjects using Procrustes
98 analysis (Goodall, 1991) to generate a mean shape. (Roberts et al.,
99 2005) apply a density measure derived from tractography results.
100 Their measure (fiber density index; FDi) quantifies the average number
101 of detected fiber paths passing through voxels in a ROI. (Wassermann
102 et al., 2010a) use Gaussian processes to create voxel-wise probability
103 maps of white matter structure. The fiber locations in high density
104 regions of the image space are used by O'Donnell et al. (2009) as a tem-
105 plate to align other fibers and compute correspondences. Yushkevich
106 et al. (2008) analyze white matter tracts using deformable geometric
107 medial models that allow for integration of nearby tensor-based
108 features to reduce the dimensionality and improve registration. (Patel
109 et al., 2010) use a fast-marching algorithm to encapsulate white matter
110 tracts in voxel based boundaries, which are then matched using
111 variational techniques.
112 In contrast to the parameterized methods mentioned above, white
113 matter analysis can also be performed using a voxel-based approach.
114 A popular method known as tract based spatial statistics (TBSS)
115 (Smith et al., 2006), uses a skeletonized representation of white matter
116 and uses nonlinear registration for matching the skeletons. Although it
117 is a very popular approach, TBSS does not explicitly represent tracts
118 that would be recognized by anatomists, and therefore is not guaran-
119 teed to produce a consistent labeling of tracts from one brain to another
120 (Schwarz et al., 2013). Although voxel-based methods can also be used
121 to analyze DWI, they are often sensitive to the image registration
122 (Tustison et al., 2012). Most existing white matter analysis techniques
123 focus on nonlinear registration of fractional anisotropy (FA) images as
124 in TBSS (Smith et al., 2006) and voxel-based morphometry (VBM),
125 which can be applied to DWI-derived maps such as FA (Jones et al.,
126 2005). Other approaches that focus on diffusion tensor correspondences
127 are usually based on a global image registration (Wang et al., 2011; Yeo
128 et al., 2009), but a high-dimensional registration of tensor fields may
129 also be used, as can tensor-based statistics (Chiang et al., 2008; Lee
130 et al., 2009; Lepore et al., 2008). Given the richness of information
131 provided by tractography, it seems advantageous to directly study
132 the fiber tract bundles rather than simply analyzing voxel-based
133 representation.

134 Approach

135 Our work adopts a parameterized approach by refining the repre-
136 sentation of white matter structure into compact and localized paths,
137 represented as 3D curves. These paths represent the most influential

138regions in tractography and are used as compact dimensional represen-
139tations of the fiber bundle. Ourmethod uses an additional local registra-
140tion of specific white matter regions to fix biases (Tustison et al., 2012)
141in voxel-based analysis and many of the problems of registration
142algorithms (Klein et al., 2009) that work on the entire image. Addition-
143ally, our approachmay offer increased statistical power as it finds shape
144homologies across different white matter tracts.
145Termed themaximumdensity path (MDP) approach, it incorporates
146information from tractography-derived fibers by selecting a subset of
147fiber bundles from a white matter atlas in the same space. We generate
148a density image from the fiber bundles and use it to create a graphwith
149voxel locations as nodes and fiber density measures as edges. We
150implement a widely used graph search algorithm to find the MDP
151between two pre-specified regions of interest (ROI) in the atlas. The
152MDPs represent fiber bundles that characterize a tract using points of
153highest density. These compact descriptions of a tract's scale, location,
154and high-level geometric information are computed for all subjects in
155a population. We find correspondences across the paths by bringing
156them into the same space using geodesic curve registration. Finally,
157the average MDP for a given population is computed using a nonlinear
158iterative method. As an example, we use our method to determine
159genetic influences on white matter tracts based on a large cohort of
160over 565 twin subjects scanned using HARDI at 4-Tesla. We compare
161the results to those obtained by the more standard TBSS method.
162MDPs have been used as one tool for pilot studies of sex differences
163and a variety of diseases (Nir et al., 2012; Prasad et al., 2011b). In the
164current study we explicate the technical details of the method, validate
165its repeatability, compare it to the widely used TBSS, and use MDPs to
166study heritability along with genetic associations. The main contribu-
167tions of this work are as follows:

168• Fiber tract bundles are represented by compact reduced dimensional
169representations known as maximum density paths (MDPs).
170• MDPs are represented by vector valued functions and are analyzed in
171an intrinsic and invariant manner.
172• Shape matching between MDPs is achieved using geodesic curve
173registration that not only yields smooth deformations between
174MDPs, but also provides shape distances between them.
175• Group analysis of MDPs is conveniently performed using an intrinsic
176statistical framework that enables the computation of shape averages
177and their first order variations.
178• Fiber bundle analysis via MDPs is used to identify highly heritable
179regions in the white matter tissues in twin subjects and is also used
180to show genetic associations.

181Materials and methods

182This section describes important steps starting with the extraction
183of fibers using HARDI tractography, clustering of fibers using a white
184matter ROI atlas, representation and matching of fiber bundles using
185MDPs, and finally, statistical analysis of MDPs in a population. The sche-
186matic pipeline outlining the extraction and representation of MDPs is
187shown in Fig. 1, whereas the workflow for statistical group analysis is
188shown in Fig. 2.

189HARDI tractography using the Hough transform

190We use a global tractography algorithm (Aganj et al., 2011) to
191extract fibers from HARDI images.
192The algorithm uses extensive information provided by HARDI at
193each voxel, parametrized by the orientation distribution function (ODF).
194Our tractography method selects fibers in the diffusion image space
195by generating scores for all possible curves at a seed point. These curves
196are parameterized using 2nd order polynomials. An additional parame-
197ter controls the maximum expected curve length and is set to a value
198representing the largest dimension of the volume. In practice, the
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