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17Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential
18dementia.We here propose an individualized Gaussian process-based inference scheme for clinical decision sup-
19port in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and trans-
20parent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's
21disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge
22about normative decline of local and global graymatter volume across the brain in elderly. By supposing smooth
23structural trajectories the models account for the general course of age-related structural decline as well as late-
24life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about
25normal brain aging variability affords individualized predictions in single cases. UsingGaussian processmodels as
26a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in
27terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error
28and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference
29for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We
30validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy sub-
31jects with ages 18–94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild
32Cognitive Impairment and Alzheimer's disease.

33 © 2014 Published by Elsevier Inc.
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38 Introduction

39 Magnetic Resonance Imaging (MRI) and computational morphome-
40 try have become invaluable tools for in-vivo exploration of the underly-
41 ing changes in healthy and pathological brain aging (Fjell andWalhovd,
42 2010; Frisoni et al., 2010). Consistent findings show that regional gray
43 matter volume, as well as cortical thickness, exhibit substantial decline
44 as a process of healthy aging (Fjell and Walhovd, 2010; Raz and
45 Rodrigue, 2006). Importantly, studies observed considerable variability
46 of age-related structural trajectories across brain regions and healthy
47 elderly individuals (Raz et al., 2005, 2010; Walhovd et al., 2011). An
48 open question in clinical practice still is, how to efficiently identify
49 local pathological brain aging in individuals at risk of developing

50Alzheimer's disease (AD) or other types of dementia. Due to the large
51individual differences of normative age-related decline, the visual as-
52sessment of healthy vs. pathological local atrophy is a challenging task
53even for experienced radiologists. While single case studies are long-
54standing practice in neuropsychology (for overview of methods see
55e.g. Crawford and Garthwaite, 2012; McIntosh and Brooks, 2011),
56there is also an increasing number of neuroimaging studies using
57Voxel-based Morphometry (VBM) (Ashburner and Friston, 2000;
58Mechelli et al., 2005) that focus on single cases in comparison to a
59reasonably sized group of control subjects. These studies explored
60voxelwise macroanatomy in patients with neurological disorders like
61aphasia, Huntington disease, lesions, focal cortical dysplasia, epilepsy,
62cortical atrophy, and dementia (Colliot et al., 2006; Maguire et al.,
632010; Mehta et al., 2003; Migliaccio et al., 2012; Mühlau et al., 2009;
64Mummery et al., 2000; Salmond et al., 2003; Scarpazza et al., 2013;
65Seghier et al., 2008; Sehm et al., 2011; Woermann et al., 1999).
66In order to provide statistical measures of suspicious local brain
67volumes (or cognitive test scores) in single case studies, several
68parametric techniques have been proposed. A simple approach is to
69calculate z-scores using the control sample mean and standard devia-
70tion. If the observed z-score is found to be less than a certain percentile
71of the standard normal distribution, e.g. z b−1.645 (corresponding to a
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72 one-tailed 95% percentile), the deviation might be considered statisti-
73 cally significant. Unfortunately, the z-score approach lacks the ability
74 to account for the uncertainty of the control sample statistics, which
75 might inflate type I errors especially in small samples (Crawford and
76 Howell, 1998). Thus, the more conventional parametric approach to
77 single case inference is the two sample t-test using a ‘pooled’ estimate
78 of the variance (for details see e.g. Mühlau et al., 2009). The t-test statis-
79 tic in the special case with n controls and one single patient reduces to
80 t ¼ μc−μp

� �
= σ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nþ 1

p� �
with control sample standard deviation

81 σc. Previous studies explored methodological issues using this type of
82 unbalanced parametric design. In particular, small samples have been
83 found to reduce sensitivity for detection of structural differences in
84 single subjects (Mühlau et al., 2009). Unfortunately, for unbalanced de-
85 signs the above difference score might be particularly affected by non-
86 normality, rendering the t-test invalid (Salmond et al., 2002; Viviani
87 et al., 2007). Robustness of the tests was found to be increased (type I
88 errors reduced) by using larger smoothing kernels or appropriate trans-
89 formations of the data. However, for inference in elderly subjects, the
90 approaches often do not address the underlying developmental process,
91 e.g. age-related effects in the control sample (see also Dukart et al.,
92 2011), as well as variations due to other relevant covariates, e.g. global
93 volume differences (Peelle et al., 2012).
94 Gaussian process (GP) models have emerged as a flexible and ele-
95 gant approach for prediction of continuous, i.e. y ∈ ℝ, or binary, i.e. y
96 ∈ [0, 1] variables (Kim and Ghahramani, 2006; Rasmussen, 1996;
97 Rasmussen and Williams, 2006). Recently,GPs were successfully intro-
98 duced to the neuroimaging community. The potential applications
99 range from spatial priors (Groves et al., 2009), cortical maps (Macke
100 et al., 2011), image denoising (Zhu et al., 2012), parameter estimation
101 (Wang et al., 2012), white matter fiber clustering (Wassermann et al.,
102 2010) and meta-analysis (Salimi-Khorshidi et al., 2011). GP models
103 were shown to be particularly powerful for clinical applications, provid-
104 ing probabilistic predictions of symptom severity, pain states, recovery,
105 cognitive and disease states using regression (Doyle et al., 2013a; Hope
106 et al., 2013;Marquand et al., 2010) and classification (Hahn et al., 2011;
107 Marquand et al., 2010; Mourao-Miranda et al., 2012; Pyka et al., 2012;
108 Young et al., 2013) using functional and structuralMR images as inputs.
109 In addition to the common application as decoding or recognition
110 models, i.e. making inference about causes of functional and structural
111 brain states based on images (Friston et al., 2008), GPs might be partic-
112 ularly useful for generative modeling of individual differences of brain
113 morphometry (see also Ashburner and Klöppel, 2011; Friston and
114 Ashburner, 2004).
115 Here we propose a new approach to support individualized clinical
116 decisions about an elderly patient's brain structure by providing quanti-
117 tative, unbiased and highly transparent maps of local gray matter
118 abnormalities and global volume z-scores for graymatter, white matter
119 and cerebrospinal fluid. Thatmeans, themaps and z-scores aim at infor-
120 mation support rather than providing fixed patient-level predictions
121 about disease states derived from ‘black-box’ classifiers. GPs are used
122 to implement a normative generative model of elderly subjects' local
123 and global volumes in terms of a non-parametric function of subjects'
124 covariates. The model captures normative age-related trajectories and
125 effects of covariates typically observed in control samples. This implicit-
126 ly assumes smooth structural trajectories without imposing strong con-
127 straints on the developmental model and thus allows more flexibility
128 than low degree polynomial expansions (for discussion of quadratic
129 fits see e.g. Fjell et al., 2010). At the same time it accounts for region spe-
130 cific late life accelerated gray matter shrinkage, which is shown to be
131 part of healthy brain aging (Fjell et al., 2012, 2013; Walhovd et al.,
132 2011). The substantial individual differences of local and global volumes
133 in elderly brains (i.e. even at the same age and fixed covariates) and the
134 measurement noise are modeled in terms of Gaussian distributions and
135 accounted for in individualized predictions. Aftermodel optimization in
136 a large control sample, the local GP priors are conditioned on scans of
137 new single subjects at risk of developing AD or other types of dementia.

138Trainingwith a large pooledMRI database of 1238 healthy subjectswith
139ages 18–94 years, and testing with an independent sample from the
140Alzheimer's Disease Neuroimaging Initiative dataset including subjects
141with MCI and AD, we show that the obtained normative probability
142maps (NPM) and global z-scores provide a powerful clinical application
143by quantitatively characterizing the single patient's abnormalities as
144compared to age-matched neurologically normal controls. This imple-
145ments a Bayesian single case inference about structural abnormalities
146that flexibly accounts for predictive uncertainty in practical situations
147of different control data sample sizes, different data noise levels, and in-
148dividual patient covariates, i.e. age, brain sizes, etc.

149Methods

150A Gaussian process model of cross-sectional gray matter observations in
151healthy elderly

152Ideally, a generative model of the normative structural aging pro-
153cess accurately predicts the local gray matter volume y of an elderly
154study participant based on the age and a set of informative covariates
155x = [age, sex, …],i.e. forming a low dimensional covariate space D∈
156ℝm . The predictions require availability of most covariates for all
157cases in the training and test samples. Thereby, we here restrict our
158local generative model to six covariates summarized in xi =
159[age, sex, tgmv, twmv, tcsf, fstr] for subject i, including demography
160and global parameters, i.e. total gray matter volume (tgmv), total
161white matter volume (twmv), and total cerebrospinal fluid (tcsf)
162obtained from MRI preprocessing. Furthermore, for inference about
163global atrophy an additional generative model for global brain
164parameters tgmv, twmv, and tcsf was applied using four covariates
165xi = [age, sex, ticv, fstr] with ticv = tgmv + twmv + tcsf. Note,
166the proposed framework also naturally extends to physiological
167and behavioral factors, as well as subject independent but scan spe-
168cific variables, e.g. the signal to noise ratio of the scan. In order to af-
169ford pooling across samples from 1.5 and 3 Tesla MRI scanners, we
170also included a field strength variable (fstr). The whole training sample
171covariate data is further denoted byX, whichwas obtained from concat-
172enation of rows xi for all n training subjects. The rows of brain data ma-
173trix Y (with entries yij) refer to theGMV images of all n training subjects,
174and yj is used to denote its j-th column, i.e. the data of voxel j from all
175subjects. Then the lifespan generative model of gray matter in voxel j
176follows

yij ¼ g xi; θ j

� �
þ ϵij; ϵij∼N 0;σ2

j

� �
ð1Þ

178178with subject index i and hyperparameter θj, an additive independent
identically distributed Gaussian noise (also called the likelihood

179model) with variance σj
2. The latent (or noise free) variables g(x, θ)

180incorporate our knowledge about aging and variability in different loca-
181tions x of the covariate spaceD. We now exploit the function space per-
182spective and define a GP prior, which implements our assumption about
183smoothness of the latent trajectories g(x, θ). Technically, a GP is a distri-
184bution of functions,which is fully specified by itsmean and its covariance
185function (for a technical introduction see Rasmussen and Williams,
1862006)

g∼GP m; covð Þ: ð2Þ
188188

The following specification of the priormeanm and covariance func-
189tion cov implies a distribution over latent structural trajectories and
190their individual differences in voxel j

m g xp; θ j

� �� �
¼ 0 ð3Þ
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