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Recentwork onboth task-induced and resting-state functionalmagnetic resonance imaging (fMRI) data suggests
that functional connectivity may fluctuate, rather than being stationary during an entire scan. Most dynamic
studies are based on second-order statistics between fMRI time series or time courses derived from blind source
separation, e.g., independent component analysis (ICA), to investigate changes of temporal interactions among
brain regions. However, fluctuations related to spatial components over time are of interest as well. In this
paper, we examine higher-order statistical dependence between pairs of spatial components, which we define
as spatial functional network connectivity (sFNC), and changes of sFNC across a resting-state scan. We extract
time-varying components from healthy controls and patients with schizophrenia to represent brain networks
using independent vector analysis (IVA), which is an extension of ICA to multiple data sets and enables one to
capture spatial variations. Based on mutual information among IVA components, we perform statistical analysis
and Markov modeling to quantify the changes in spatial connectivity. Our experimental results suggest signifi-
cantlymorefluctuations in patient group and show that patientswith schizophrenia havemore variable patterns
of spatial concordance primarily between the frontoparietal, cerebellar and temporal lobe regions. This study ex-
tends upon earlier studies showing temporal connectivity differences in similar areas on average byproviding ev-
idence that the dynamic spatial interplay between these regions is also impacted by schizophrenia.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Avery active research topic in functionalmagnetic resonance imaging
(fMRI) studies has been the study of functional connectivity—statistical
interactions among brain regions during cognitive or sensorimotor
tasks, or merely from spontaneous activity during rest. Dysconnectivity
or abnormal connectivity has typically been considered a hallmark of var-
ious mental disorders, especially schizophrenia (Bullmore et al., 1997;
Stephan et al., 2009). Schizophrenia is still one of the most complex
and heterogeneous mental disorders that impairs multiple cognitive do-
mains including memory, attention, language, and execution function
(Danielyan and Nasrallah, 2009; van Os and Kapur, 2009). Previous neu-
roimaging studies have found both structural and functional abnormali-
ties in the temporal lobe, parietal cortex, and cerebellar regions for
schizophrenia (Iritani, 2007). Also, evidence of dysconnectivity among a
number of brain networks in schizophrenia has been reported (Jafri
et al., 2008; Jones et al., 2012; Meyer-Lindenberg et al., 2001; Yu et al.,

2011). Most connectivity studies use independent component analysis
(ICA), a popular data-drivenmethod, to reveal robust markers for schizo-
phrenia biomarkers. ICA separates single-subject fMRI data into a set of
maximally independent components and associated time courses
(Calhoun et al., 2001a; McKeown et al., 1998). Spatial components repre-
sent temporally coherent brain networks, and functional connectivity
among these networks—called functional network connectivity—is typi-
cally defined as the correlation or coherence between associated time
courses (Allen et al., 2011a; Jafri et al., 2008). An advantage of using
ICA-based methods for functional connectivity analysis is that no explicit
prior knowledge about brain activity is required and the estimates are not
biased due to selection of a seed region of interest. For multi-subject fMRI
data, group ICA with temporal concatenation of data sets can be used to
estimate spatial components for individual participants and thus enables
group inferences (Allen et al., 2011b; Calhoun and Adalı, 2012; Calhoun
et al., 2001b).

In most fMRI studies, functional connectivity is typically assumed to
be stable during the entire scan. There is an increasing interest to devel-
op approaches to examine dynamic changes in functional connectivity
during the course of an experiment (Hutchison et al., 2013). For exam-
ple, Sakoğlu et al. performed an ICA-based dynamic analysis on fMRI
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data acquired during both a resting state and an auditory oddball (AOD)
task (Sakoğlu et al., 2010). A key motivation for such analysis is that
connectivity dynamics can capture uncontrolled but reoccurring pat-
terns of interactions among brain networks, which are not detectable
through static connectivity analysis. It is especially important when
the focus is intrinsic networks that are not necessarily task related,
such as during resting state where diverse levels of attention and
mind wandering are expected. Currently, only a few studies have fo-
cused on the dynamic changes in resting-state functional connectivity.
For example, Chang and Glover performed a time-frequency coherence
analysis based on wavelet transformation and found resting-state
connectivity fluctuations between posterior cingulate cortex (PCC)
and the networks having negative correlation with PCC (Chang and
Glover, 2010); Kang et al. introduced a variable parameter regression
combinedwith the Kalman filtering approach for resting-state dynamic
patterns among eight brain networks (Kang et al., 2011); sliding-
window correlation analysis was also employed on resting state data
using either seed- or ICA-based methods (Allen et al., 2012; Hutchison
et al., 2012; Starck et al., 2012).

The studies described above mainly focus on evaluating dynamic
changes in temporal patterns. On the other hand, fluctuations related
to spatial components over time are of interest as well, though there
has been little work on this topic. One recent study focused on spatial
changes within a single network (default mode network) using a
group ICA framework (Kiviniemi et al., 2011). Analogous to functional
network connectivity, we previously proposed approaches to evaluate
residual component dependencies, i.e., the statistical dependencies be-
tween spatial (as opposed to temporal) component pairs that remain
after blind source separation (Ma et al., 2011a,b). Such approaches are
promising, as it is well known that changes in temporal connectivity
patterns imply changes in spatial patterns, as shown in group ICA stud-
ies (Calhoun et al., 2008). However, the group ICA approaches involve a
group-level principal component analysis (PCA),which attempts to find
a common signal space for all subjects and thus introduce an averaging
effect over group (Allen et al., 2011b; Esposito et al., 2005). Therefore,
changes in the patterns of the spatial components may not be optimally
detected using the group ICA approach. In addition, such an approach
does not capitalize on the entire data set at once, and in essence, breaks
the connection between the blind source separation model and the re-
sults. Thus, it is important to work with a well adapted method to cap-
ture such changes.

Independent vector analysis (IVA) is a recent extension of ICA to
multiple data sets. IVA concurrently extracts independent components
by fully exploiting the statistical dependence among the data sets
(Anderson et al., 2012; Lee et al., 2008). In IVA, the components from
a single data set are assumed to be maximally independent of each
other, as in group ICA method. In contrast to group ICA, IVA also maxi-
mizes the dependence between associated components from different
data sets. These associated components are conceptually regrouped
into so-called source component vectors (SCVs), which cannot be
achieved by separate ICA of each data set during blind source separa-
tion. IVA has shown, in most cases, superior performance in capturing
variability in spatial components across individuals and groups (Dea
et al., 2011; Ma et al., 2013; Michael et al., 2013). We also noted that
as group variability increases, the estimation of the IVA component
shows less interference from other components than that estimated
by the group ICA method (Ma et al., 2013).

In this paper, we define spatial functional network connectivity
(sFNC) as high-order statistical dependence among the IVA components
and examine changes of sFNC over time. We employ a sliding-window
approach to segment resting state fMRI data into overlapping timewin-
dows. Because IVA performs a joint separation of all time windows and
subject data sets, our hypothesis is that the spatial variability will be
fully captured. This is motivated by the absence of a reduction of the
data to a common subspace—as needed in group ICA approaches—and
is backed up with simulation results in (Dea et al., 2011; Ma et al.,

2013). Hence, IVA is expected to perform much better with small re-
cords of data as it is fully taking the multivariate nature of all the avail-
able data and dependence across data sets when performing the
decomposition. Based on the residual mutual information between spa-
tial components derived from IVAdecomposition,we performstatistical
analysis and Markov modeling to quantify connectivity dynamics in
spatial patterns.

Material and methods

Participants

Participants consisted of 10 healthy controls (HC, average age:
40 ± 11; range: 26–62; three females) and 10 patients with schizo-
phrenia (SZ, average age: 44 ± 9; range: 25–54; two females). Patients
all had chronic schizophrenia and symptomswere also assessed by pos-
itive and negative syndrome scale (PANSS). All participants were
scanned during rest and they were instructed to relax with their eyes
open and avoid falling into sleep. We perform two-sample t-tests on
the age and IQ measure of subjects in the HC and SZ groups and note
no significant group difference.

Image acquisition and preprocessing

A five-minute resting state scan was acquired on a Siemens 3T
Allegra dedicated head scanner using single echo planar imaging
with the following parameters: repetition time (TR) 1.5 s, echo time
27 ms, field of view 24 cm, 64 × 64 acquisition matrix, flip angle 70°,
3.75 × 3.75 × 4 mm3 voxel size, 4 mm slice thickness, 1 mm gap, 29
slices, and ascending acquisition.

SPM software package (http://www.fil.ion.ucl.ac.uk/spm/software/
spm5/) was used for fMRI data preprocessing, including realignment
with INRIalign (Freire et al., 2002), spatial normalization into the stan-
dard Montreal Neurological Institute (MNI) space, resampling to
3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels, and smoothing with
a 10 mm full width at half-maximum Gaussian kernel. In addition, to
evaluate differences in motion artifacts between two groups, we
performed χ2 tests on the six estimated realignment parameters at
each time point and on the absolute sum of the first three parameters
and three rotational parameters. We find that for all tests, two
groups have no significant differences with respect to motion arti-
facts (P N 0.23). Therefore, we believe that motion artifacts appear
to have little impact on our study.

A sliding-window approach is used to segment resting state data.
We first divide the original 200 time points for each subject into
L = 7 time windows such that each contains T = 50 time points (win-
dow size = 75 s) and 50% of time points are overlapping between two
sequential windows, as shown in Fig. 1. Then the images within each
time window are reshaped into a matrix (time points by voxel num-
bers), denoted by a vector x[m,l],m = 1,…,M, l = 1,…,L if we consid-
er voxels are samples for each time point, where M = 20 is the total
number of subjects. Therefore, we perform joint blind source separa-
tion on theseML data sets, each of size T × V (where V is the number
of voxels).

Independent vector analysis

We apply IVA to achieve joint blind source separation and extract
spatial components frommultiple subjects and different time windows
concurrently.We now formulate the IVA problem for themulti-subject,
multi-window fMRI analysis. Suppose each data set from the mth sub-
ject at the lthwindow is formed by the linearmixtures ofN independent
sources,

x m;l½ � ¼ A m;l½ �s m;l½ �
;m ¼ 1;…;M; l ¼ 1;…; L ð1Þ
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