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SIENA and similar techniques have demonstrated the utility of performing “direct”measurements as opposed to
post-hoc comparison of cross-sectional data for the measurement of whole brain (WB) atrophy over time.
However, gray matter (GM) and white matter (WM) atrophy are now widely recognized as important
components of neurological disease progression, and are being actively evaluated as secondary endpoints in
clinical trials. Direct measures of GM/WM change with advantages similar to SIENA have been lacking. We
created a robust and easily-implemented method for direct longitudinal analysis of GM/WM atrophy, SIENAX
multi-time-point (SIENAX-MTP).We built on the basic halfway-registration andmask composition components
of SIENA to improve the raw output of FMRIB's FAST tissue segmentation tool. In addition, we created LFAST, a
modified version of FAST incorporating a 4th dimension in its hidden Markov random field model in order to
directly represent time. The method was validated by scan–rescan, simulation, comparison with SIENA, and
two clinical effect size comparisons. All validation approaches demonstrated improved longitudinal precision
with the proposed SIENAX-MTP method compared to SIENAX. For GM, simulation showed better correlation
with experimental volume changes (r = 0.992 vs. 0.941), scan–rescan showed lower standard deviations
(3.8% vs. 8.4%), correlation with SIENA was more robust (r = 0.70 vs. 0.53), and effect sizes were improved by
up to 68%. Statistical power estimates indicated a potential drop of 55% in the number of subjects required to
detect the same treatment effect with SIENAX-MTP vs. SIENAX. The proposed direct GM/WMmethod significantly
improves on the standard SIENAX technique by trading a small amount of bias for a large reduction in variance,
and may provide more precise data and additional statistical power in longitudinal studies.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Brain atrophy measurement has become a key analysis in basic
neuroimaging science, aging research, and research into pathologic con-
ditions including multiple sclerosis (MS) (Bermel and Bakshi, 2006;
Zivadinov and Bakshi, 2004), Alzheimer's disease (AD) (Sluimer et al.,
2008), and Parkinson's disease (Burton et al., 2005). It is also becoming
an important component ofmodernMSandAD clinical trials (Thal et al.,
2006; Zivadinov et al., 2008). Readily available segmentation tools such
as FMRIB's Structural Image Evaluation, usingNormalisation, of Atrophy
(SIENA) (Smith et al., 2001) allow atrophy measurements to be both
reliable (Sormani et al., 2004) and highly standardized across studies
and research centers (Jasperse et al., 2007).

A better understanding of the specific mechanisms of atrophy has
led many researchers to focus on separate quantification of gray matter
(GM) and white matter (WM) atrophy (Chard et al., 2004; Hulst and
Geurts, 2011; Karas et al., 2003; Sanfilipo et al., 2006; Thompson et al.,

2003; Zivadinov and Minagar, 2009; Zivadinov and Pirko, 2012).
Although a variety of measurement approaches are available (Chen
et al., 2004; Derakhshan et al., 2010; Nakamura and Fisher, 2009;
Nakamura et al., 2011), one used by a number of groups is to perform
independent tissue segmentations at both baseline and follow-up time
points (potentially with some spatial normalization), and then calculate
the changes via simple subtraction of the relevant total volumes (Healy
et al., 2009; Horakova et al., 2009; Oreja-Guevara et al., 2005; Valsasina
et al., 2005). Unfortunately, although this approach is straightforward,
intuitive, and easily implemented, it is considerably less reproducible
than a direct measurement like SIENA. In fact, even whole brain mea-
sures from SIENAX (the cross-sectional variant of SIENA) (Smith et al.,
2002) are less reproducible than SIENA change measures (Cover et al.,
2011), and GM/WM-specific measures are even more difficult. This
reduction in precision can have serious consequences for the statistical
power of planned studies, resulting either in the need for very large
subject groups or in the inability to detect real changes (Anderson
et al., 2007; Healy et al., 2009).

There are a number of potential reasons that reproducibility issues
arise from this approach. First, and fundamentally, since two indepen-
dent cross-sectional measures are used rather than a single direct
measurement, there are two sources of measurement error. Without
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a direct comparison, it is likely that the two segmentations will come to
slightly different conclusions about the precise spatial and intensity
distributions of the tissue classes involved. In particular, voxels of
relatively ambiguous intensity (i.e., halfway between GM and WM)
will often be classified differently at baseline and follow-up, despite a
lack of change in actual tissuemorphometry. Although these differences
may ultimately cancel out in aggregate, they add to the overall variance
of the measurement. This problem is also aggravated by the fact that
the GM/WM border (as seen on conventional MRI) is generally not as
clearly defined as the brain/cerebrospinal fluid (CSF) border, and the
absolute intensity contrast between the two tissues is usually consider-
ably lower than that between GM and CSF.

Second, scanner drift and differences in positioning can lead to
minor geometric distortions in the acquired images that can change
volumetric measurements (Freeborough, 1996). Even when subtle,
these changes can dwarf small clinical changes that are the target of
studies and clinical trials. Although their nonlinear nature can make
them challenging to completely correct (Caramanos et al., 2010), they
can be at least somewhat ameliorated by improved co-registration
with full affine parameters.

Third, brain extraction can have a significant effect on measured
tissue volumes (Battaglini et al., 2008; Keihaninejad et al., 2010; Leung
et al., 2011; Popescu et al., 2012), so inconsistent brain extraction
at baseline and follow-up can lead to tissue volume changes that do
not reflect actual atrophy.

To address these issues, we developed a novel technique that
augments FMRIB's Automated Segmentation Tool (FAST) algorithm
with a 4-dimensional hidden Markov random field (HMRF) to
ensure more consistent classification. In the current version of
FAST, a 3-dimensional HMRF is used to impose local spatial con-
straints on the segmentation process. Essentially, this HMRF penal-
izes discrepancies in tissue classification for isolated voxels, but
allows for contiguous areas of change (Zhang et al., 2001). So, for
example, a shift in the WM/GM border when moving from slice to
slice is not significantly penalized. By extending the basic spatial
model to a full spatio-temporal (4-dimensional) model, we hoped
to allow for the same sort of shift in border over the time dimension –

atrophy/growth/shifting – instead of the slice direction dimension (or
any other spatial dimension), while simultaneously penalizing small,
localized discontinuities. Although this approach will introduce a small
bias in the results toward no change and might also have limited benefit
in the face of very large deformations, we hypothesized that these
concerns would be outweighed by the potential reduction in noise-
induced variance.

Additionally, we incorporated two of the key elements of SIENA into
our tissue-specific analysis technique: skull-constrained halfway-space
co-registration to address positioning and scanner drift issues, and
uniform brain extraction to reduce extraction-related variance.

Materials and methods

Inclusion of a temporal component in the HMRF

The HMRF framework employed by FAST (Zhang et al., 2001) is
designed to use spatial neighborhood information to elegantly miti-
gate the noise and homogeneity problems inherent in MRI-based
tissue segmentation. Intuitively, when assigning tissue class labels to
voxels, the algorithm attempts to minimize a global cost function that
penalizes two separate elements: selection of class labels whose mean
intensities do not match well with the labeled voxels (e.g., labeling a
relatively bright voxel GM on a T1-weighted image), and creation of
spatially isolated labels (e.g., a single GM voxel completely surrounded
byWM). It is the tension and balance between these intensity-matching
and spatial-homogeneity-preserving goals that allow for the quality of
tissue segmentations achievable with FAST.

More rigorously, the class labeling posterior probability in standard
FAST is updated iteratively according to
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where t is the iteration, l is the label of a specific class, i is the voxel
index, β is the neighborhood weighting factor, w is a neighborhood
weighting function, and the entire second term is the standard log
Gaussian penalizing deviations of the voxel intensity from the proposed
class mean. The proportionality rather than equivalence reflects the fact
that FAST allows for the incorporation of spatial prior probabilities, and
also for the fact that the absolute probabilitieswould need to be normal-
ized. The key component in this context is the weighting function w,
which expresses the overall a-priori probability of finding a three-
dimensional class configuration where voxel i's class is l, given its
already-classified neighbors. Internally, FAST calculates this term via a
conversion to “MRF weights”.

From a local perspective, the total label weight for a voxel i and label
l is determined by iterating over its neighbors j in neighborhood N
(where N is the neighborhood of the up to 26 voxels surrounding
voxel i), and is calculated as:
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where d(i,j) is the distance between voxels i and j (diagonal neighbors
are farther than horizontal neighbors, and the slice resolution is often
lower than the in-plane resolution), and the right side is the current
iteration's a posteriori probability of classification l for voxel j. Note
that in implementation, half of the probabilities are calculated from
the previous step due to linear scanning.

However, it is important to note that the mathematics behind the
general HMRF model are not limited to the usual 3 spatial dimensions
(Winkler, 2003), and in fact the implementation in FAST can be very
naturally extended from 3 dimensions to 4 with minimal modification.
As noted above, tissue atrophy or growth can be considered as a change
in the border between tissues or between tissue and CSF when moving
along the timedimension, and is analogous to the shifts that occurwhen
moving from slice to slice. The main distinction is that for a two-point
tissue change analysis, each voxel has only one temporal neighbor
whereas there are usually 26 spatial neighbors. Recognizing this,
we modified the above calculation to be:
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where the second term is the prior iteration a posteriori probability of
classification l for voxel i in the same physical position as i but at the
other time-point, multiplied by a factor z. Thus, this calculation now
includes a regularization term for maintaining constant voxel classifica-
tion over time as well as for the usual agreement with spatially
neighboring classifications. The z factor is a weighting coefficient to
control the importance of temporal consistency in the model, and can
be specified either as a constant or as a constant divided by the length
of time between scans.

We implemented the above scheme, called LFAST (for longitudinal
FAST), by modifying FAST to be multithreaded, and having the two
segmentations proceed in parallel. We used a producer/consumer
semaphore system to cause each thread of FAST to operate in symmetric
lock-step, moving on to the next iteration only when the total cost
function could be calculated by each side comparison. Furthermore,
this was implemented in an unbiased way such that neither time
point was processed “first” or influenced the other time point in a
non-reciprocal manner.
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