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The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is
of immense importance and an area of active research. Previous attempts have required complex simulations
which model the dynamics of each cortical region, and explore the coupling between regions as derived by ana-
tomic connections.While much insight is gained from these non-linear simulations, they can be computationally
taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear
models. Here we show that a properly designed linear model appears to be superior to previous non-linear ap-
proaches in capturing the brain's long-range second order correlation structure that governs the relationship be-
tween anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph
diffusion, whereby the diffusing quantity undergoes a randomwalk on a graph.We test ourmodel using subjects
who underwent diffusionMRI and resting state fMRI. The network diffusionmodel applied to the structural net-
works largely predicts the correlation structures derived from their fMRI data, to a greater extent than other ap-
proaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from
anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The
success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-
range correlation structuremay percolate within the brain via purelymechanistic processes enacted on its struc-
tural connectivity pathways.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Whole brain connectivity networks or “connectomes” come in two
flavors: structural networks extracted from tractography algorithms ap-
plied to diffusion MRI (dMRI) (Gong et al., 2009; Iturria-Medina et al.,
2007); and (resting-state) functional networks, inferred from the
strength of long-range second order temporal correlation structure of
activation signals in various brain regions (Cabeza and Kingstone,
2006). Subsequent analysis using ICA (Calhoun et al., 2009) or graph
clustering techniques (Shi and Malik, 2000), indicates the presence of
distinct sub-networks, prominently the default mode and salience net-
works (Greicius et al., 2009). Diffusion tensor imaging (DTI) has been
extensively used as an estimate of structural connectivity (Bullmore
and Sporns, 2009; Bullmore and Bassett, 2011; van den Heuvel and
Pol, 2010). Probabilistic tractography methods for estimating structural
connectivity from DTI have been adopted in the literature, e.g. (Iturria-
Medina et al., 2007, 2008). Both forms of connectivity have experienced
great interest from the neuroscience community, as shown in Achard
and Ed (2007); Bassett et al. (2010); Honey et al. (2007, 2009) and
Joyce et al. (2013).

A major goal of connectome research is to discover whether, and
how, the structural and functional networks of the brain are related —

an active area with tremendous interest and wide ramifications in neu-
roscience and computational biology (Cabral et al., 2011; Deco et al.,
2009, 2012; Ghosh et al., 2008a; Honey et al., 2007, 2009, 2010; Mars
et al., 2011). Previous investigations have relied on non-linear models
of cortical activity whichwere extended tomodel whole-brain behavior
via coupling between regions based on structural connectivity (Honey
et al., 2009). Other studies place non-linear oscillators at each cortical
location and likewise couple themusing anatomic connectivity strength
(Cabral et al., 2011; Deco et al., 2009, 2012; Ghosh et al., 2008a). Since
these powerful generative simulation models are only revealed through
large scale, fine-grained finite difference stochastic simulations over
thousands of time samples, they present a practical challenge for the
task of inferring functional connectivity from anatomic. The field has
not actively considered linear graph-theoretic dynamic models for this
purpose, with a few exceptions described below. Although complex
brain dynamics preclude completely linear responses, ensemble-aver-
aged behavior of large connected but individually non-linear neural
populations can be quite linear (Stephan et al., 2008).

In this paper we (re)introduce a class of linear models capturing the
correlation structure of whole brain dynamics at low frequency BOLD
levels (Galán, 2008; Honey et al., 2007, 2010). We argue that while
local brain dynamics are not linear or stationary (Bassett et al., 2010;
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Jones et al., 2012;Hutchison et al., 2013), the emergent behavior of long-
range steady state 2nd order correlations should be insensitive to detailed
local dynamics, and dependent only on the topology of structural net-
works. Thus, our hypothesis is that linear macroscopic models are suffi-
cient to infer the long-range correlation structure of brain activity,
without requiring detailed non-linear simulation models. Specifically,
we present a simple, low-dimensional network diffusion model produc-
ing an accurate description of the structure–function relationship.
Network diffusionmodels randomwalks on a graph, covering phenom-
ena from image noise removal (Zhang and Hancock, 2008) to Markov
random fields (Smolka and Wojciechowski, 2001). Interestingly, net-
work diffusion successfully captured the progression of misfolded pro-
teins within brain networks, and recapitulated patterns of dementias
like Alzheimer's disease (Raj et al., 2012). We hypothesize that
resting-state functional relationships between brain regions can be cap-
tured by a similar diffusion process applied to the structural network.
While the proposedmodel is linear, similar to Galán (2008), we impose
constraints modeled after the interaction of the various cortical regions
by taking the Laplacian of the connectivitymatrix.We test the proposed
model using dMRI and fMRI brain scans of healthy subjects, and demon-
strate higher structure–function correspondence than other competing
methods including neural mass models (Breakspear et al., 2003; Deco
et al., 2008; Moran et al., 2007). Our work could provide impetus for
similar parsimonious approaches in modeling other complex biophysi-
cal phenomena.

Our key idea is that functional signals at the spatial and temporal
resolutions of BOLD signals in brain regions are an ensemble average
of millions of neurons, and are therefore governed mainly by the num-
ber of neurons firing at any time rather than by the complex behavior of
individual neuronal activity. The non-linearities associated in neurons'
individual firing patterns are largely obliterated in the ensemble signal.
Thus, the signal correlation between two large connected regions ought
to be governed dominantly by linear processes. We show that the sim-
plest linear and purely mechanistic process enacted on the network can
reproduce the functional relationship between brain regions. Since
functional relationships appear to be enacted on a physical substrate
the brain structural connectivity our work implies that the former is a
derivative property of brain structure rather than an independent
property.

Theory

Network notation

In a brain network eachnode represents a graymatter region located
on either the neocortex or in deep brain subcortical areas. We define a
network G ¼ V;ℰð Þ with a set of N nodes V ¼ viji∈1;…;Nf g and a set
of edges given by an ordered node pair ℰ ¼ i; jð Þji∈V; j∈Vf g (Agaskar
and Lu, 2011). Between any two nodes i and j there is a fiber pathway
whose connectivity weight ci,j ∈ [0, ∞) can be measured from dMRI
tractography. The structural connectivity matrix C = {ci,j|(i,j) ∈ ℰ} is
obtained via anatomical connection probability (ACP),where thematrix
elements are obtained as a function of weighted fiber densities between
nodes (Iturria-Medina et al., 2008). Although some individual neurons
are known to be directional, dMRI does not allow measurement of di-
rectionality. Major fiber bundles resolvable by dMRI, especially
cortico-cortical pathways are generally bidirectional, having roughly
equal number of connections in either direction (Albright, 1984). We
define the connectivity strength or the weighted degree of a node i in
this graph as the sum of all connection weights: δi = ∑ j|(i,j) ∈ ℰci,j.

Linear network models

A previous implementation of a linearmodel for achieving the struc-
ture–function correspondence by Honey et al. (2009) is used in this
paper as a comparison, following Galán (2008) where an i.i.d. Gaussian

noise source ξ(n) drives a discretized multivariate autoregressive linear
system given as:

u nþ 1ð Þ ¼ Au nð Þ þ ξ nð Þ: ð1Þ

Here vector u(n) is the activation signal at time point n of all net-
work nodes corresponding to the regions of the brain. The matrix A
serves to relate the mixing between signals at different nodes, as per
A = (1 − α)I + C, where α is some leak parameter from the activity
of each node, and C is the anatomic connectivity matrix described earli-
er. Since a single “mixing” parameter α cannot access many interesting
regimes in the space of linearmodels, herewemodify A via two param-
eters:

A ¼ 1−αð ÞIþ βC:

By allowing two degrees of freedom instead of one, we obtain a
broader range of linear models than the one proposed by Galán. In
order for the simulation to be stable, the matrix A is normalized to
have unit norm, or ∥ A ∥ = 1. Following Honey et al. (2009), resting
state functional connectivity was obtained via stochastic discrete-time
simulation over a range of α ∈ [−3, 3] and β ∈ [0,6] in steps of 0.1
for both parameters. At each point (α, β), the ℓ1 error with respect to
the true functional connectivity was computed. We chose the (α, β)
pair that gives the smallest error for final computation of functional
connectivity.

Non-linear neural mass models (NMMs)

NMMsmodel neural activity in localized populations (minicolumns)
in terms of second order state–space differential equations, where the
post-synaptic potential (PSP) of neuronal populations is the hidden
state, and the activation signal, whether measured via EEG, MEG or
BOLD, is the output variables. Themodel gives rise to systems of coupled
second order non-linear differential equations, whose coupling coeffi-
cients are determined by the amount of connectivity between them,
which is not known a priori. Since no closed-form solution exists for
these equations, the model is a simulated generative model, whose be-
havior is accessed via large-scale simulations over thousands of time
points, starting from stochastic endogenous and exogenous signals
representing mean firing rates.

An NMMdefined in terms of voltages and conductanceswas utilized
(Breakspear et al., 2003), and applied to networks ranging from 66 to
1000 nodes. In a more complex recent model, a set of coupled NMMs
were instantiated at each node of a connected brain network, with
inter-regional couplings determined by anatomic connectivity (Honey
et al., 2009). In the proposedmodel, inter-regional coupling is modulat-
ed by a single coupling parameter c, whose chosen value greatly affects
the behavior of this highly non-linear coupled system. Here we imple-
ment this approach using the original computer code used in Honey
et al. (2009). Values of c were varied over a range c = {0.02, 0.07,
0.12, 0.17, 0.22, 0.27, 0.32} for each subject and the value yielding the
highest match with empirical functional connectivity was chosen.

Proposed network diffusion model

We now introduce from first principles a physically realistic linear
dynamic network model of functional connectivity relying on its emer-
gent linearity, and obtain a closed-form solution which obviates the
need for generating simulated signals. Consider first an isolated cortical
region R1.We assume that the average activation signal over all neurons
in this region, denoted by x1(t), is proportional to the number of firing
neurons per voxel (rather than to the actual action potentials thereof).
Although the internal dynamics of this isolated neural population is
complex and likely chaotic, in keepingwith our emphasis on simple lin-
ear models, we allow the simplest possible dynamic behavior of a
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