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In recent years, coordinate-based meta-analyses have become a powerful and widely used tool to study co-
activity across neuroimaging experiments, a development that was supported by the emergence of large-scale
neuroimaging databases like BrainMap. However, the evaluation of co-activation patterns is constrained by the
fact that previous coordinate-based meta-analysis techniques like Activation Likelihood Estimation (ALE) and
Multilevel Kernel Density Analysis (MKDA) reveal all brain regions that show convergent activity within a
dataset without taking into account actual within-experiment co-occurrence patterns. To overcome this issue
we here propose a novel meta-analytic approach named PaMiNI that utilizes a combination of two well-
established data-mining techniques, Gaussian mixture modeling and the Apriori algorithm. By this, PaMiNI en-
ables a data-driven detection of frequent co-activation patterns within neuroimaging datasets. The feasibility
of the method is demonstrated by means of several analyses on simulated data as well as a real application.
The analyses of the simulated data show that PaMiNI identifies the brain regions underlying the simulated acti-
vation foci and perfectly separates the co-activation patterns of the experiments in the simulations. Furthermore,
PaMiNI still yields good results when activation foci of distinct brain regions become closer together or if they are
non-Gaussian distributed. For the further evaluation, a real dataset on working memory experiments is used,
which was previously examined in an ALE meta-analysis and hence allows a cross-validation of both methods.
In this latter analysis, PaMiNI revealed a fronto-parietal “core” network of working memory and furthermore
indicates a left-lateralization in this network. Finally, to encourage a widespread usage of this new method, the
PaMiNI approach was implemented into a publicly available software system.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Over the last decades, functional neuroimaging has been evolved to
the most prevalent tool in cognitive neuroscience and the key method
for investigations into the functional organization of the human brain.
As a consequence, the neuroimaging community has generated a tre-
mendous amount of studies concerning the localization of almost all
cognitive domains. This growingnumber of published neuroimaging lit-
erature has prompted the development of meta-analysis techniques,
which exploit the substantial amount of neuroimaging data in order to
draw robust and more general inferences. Particularly coordinate-
based meta-analyses (CBMA) provide powerful and easily accessible
techniques, which operate on the three-dimensional coordinates of
peak activation foci reported by these studies in standard reference

space, i.e. the MNI (Evans et al., 1992) or Talairach (Talairach and
Tournoux, 1988) spaces. CBMA allow a straightforward analysis of
(the entire) previous literature, as it only relies on the published peak
coordinates and hencemay be employedwithout the need for obtaining
additional data from the respective authors, e.g. image files. The latter
aspect usually limits the capability of image-based methods to cover a
broad range of (in particular older) studies. Furthermore, the work on
those sparse representations of the image data is also profitable from
a computational perspective. CBMA are particularly facilitated by
large scale databases like BrainMap (www.brainmap.org) (Fox and
Lancaster, 2002; Laird et al., 2005) or NeuroSynth (www.neurosynth.
org) (Yarkoni et al., 2011) that collect the information and peak coordi-
nates of neuroimaging studies and make them accessible.

The most common previous CBMA techniques are Activation Likeli-
hood Estimation (ALE: Eickhoff et al., 2009, 2012; Turkeltaub et al.,
2002) and (Multilevel) Kernel Density Analysis (KDA and MKDA:
Wager et al., 2004; Wager et al., 2007). In principle, both methods rely
on similar concepts: first, they model each focus of a dataset; in ALE
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the activation foci are modeled as Gaussian distributions, in MKDA as
spheres. Then, these representations are combined across experiments;
in ALE via the union of themodeled activation (Turkeltaub et al., 2012),
in MKDA via weighted averages of the modeled maps representing the
studies (Wager et al., 2007). Finally, the resulting activation maps are
tested for significance, i.e. above-chance convergence, using permuta-
tion tests. The results of both techniques, ALE and MKDA, are maps
that indicate those locations in the brain, where the reported activations
of all experiments in the underlying dataset significantly converge.
The brain regions featuring this convergence of activity can then be
interpreted as being robustly involved in the cognitive processes
addressed by the experiments of the set. The co-activation patterns
shown by the resulting maps can generally be regarded as functionally
connected (Caspers et al., 2013; Eickhoff et al., 2010; Jakobs et al.,
2012). That is, they fulfill the criteria of functional connectivity by
representing temporal coincident and spatially distant neural activity
(Friston, 1994). However, both described CBMA approaches have
some disadvantages, when trying to evaluate connectivity, i.e. within
experiment co-activity. That is, the resultingmaps of ALE andMKDA in-
dicate all brain regions consistently active within a specific dataset,
without taking into account, if those brain regions are really co-active
within single experiments. Hence, there is no information on the distri-
butions of specific co-activation patterns across experiments. In order to
demonstrate this aspect, we simulated a dataset containing two diver-
gent subsets of experiments and subjected it to a standard ALE analysis
(Fig. 1):While set A featured experimentswith activation in the inferior
frontal cortex and on themiddle temporal gyrus, the experiments of set
B provided activation foci in the intraparietal sulcus and on the middle
occipital gyrus (Fig. 1, left). To simulate noise, all experiments had addi-
tional activation foci randomly distributed over the whole brain. The
simulated dataset was analyzed with the latest version of the ALE algo-
rithm (Eickhoff et al., 2012). The resulting ALEmap revealed convergent
activity in all four input regions (Fig. 1, right). However, the segregation
into two underlying subsets cannot be recognized anymore in the ALE
map as all four regions likewise show significant convergence. This
leads to possible misinterpretations regarding co-activity within the
ALE map. All four regions are represented in the same map, although
there was for example no experiment within the simulation dataset in
which the inferior frontal cortex was co-active with the intraparietal
sulcus.

To address this issue and provide a method for a more specific iden-
tification of co-activation patterns across experiments, we developed a
novel meta-analytic approach based on well-established data-mining
techniques. The proposed method identifies frequent co-activation pat-
terns in coordinate-based neuroimaging datasets and reveals how often
a specific brain region is co-active with other brain regions within the
dataset. Here we present the novel method, named PaMiNI (Pattern
Mining in NeuroImaging), and its implementation into a software tool.
Some aspects of the PaMiNI method have already been described in

(Caspers et al., 2012a, 2012b). The method is evaluated by means of
five simulations and cross-validated with ALE using a real dataset on
working memory.

Material and methods

The aim of the proposed method is to find frequent co-activation
patterns, i.e. combinations of brain regions that frequently show co-
occurrent activation in a dataset of neuroimaging experiments. It is
based on the concepts of CBMA, that is, all information is provided as
three-dimensional coordinates of activation maxima in the individual
experiments. The method itself is then composed of two steps: first,
the brain regions consistently activated in a specific dataset (set of ex-
periments, each providing at least one focus of activation) are modeled
usingGaussianmixturemodeling on the three-dimensional coordinates
making up this dataset, and the activation foci are assigned to the iden-
tified brain regions. In the second step, frequent co-activations patterns
across experiments are identified using association analysis.

The method as well as the implemented software system will be
referred to as PaMiNI, which stands for PatternMining inNeuroImaging.

Modeling of brain regions underlying a dataset

Let D = {E1,…,En} be a dataset of experiments where every
experiment Ei is a set of three-dimensional peak coordinates Ei ¼
Ci
1;…;Ci

mi

n o
withmi ≥ 1 representing the number of peak coordinates

of experiment Ei. The coordinates are triplets Cj
i = (xji,yji,zji) where

xj
i, yji and zj

i are the coordinate components for the three spatial di-
mensions in MNI reference space (Evans et al., 1992). If coordinates
are given in Talairach space (Talairach and Tournoux, 1988), they
are converted to the MNI reference space using the Lancaster trans-
form (Laird et al., 2010; Lancaster et al., 2007). Hence, the set of co-
ordinates in a dataset is given in a discrete metric space.

To reveal convergent activitywithin the coordinate data of the entire
dataset D, common subsets of coordinates based on their spatial loca-
tion are identified by applying Gaussian mixture modeling on the

pooled coordinates C ¼ C1
1;…;C1

m1
;…;Cn

1;…;Cn
mn

n o
of all experiments

in the dataset. That is, considering the coordinates as instances random-
ly drawn from a mixture of Kopt three-dimensional Gaussian distribu-
tions and thus fitting the Gaussians to optimally represent the
coordinate data. Kopt indicates the optimal number of Gaussian distribu-
tions, which still has to be specified. The probability density function
withwhich a coordinate Cji is drawn from themixture can be formalized
as

f Ci
j

� �
¼

XKopt

k¼1

pk � N Ci
jj μk;Σk

� �

where pk specifies the proportion of distribution k in themixture of dis-

tributions with 0 b pk b 1 and ∑
Kopt

k¼1
pk ¼ 1:N Ci

jj μk;Σk

� �
denotes the

value of the Gaussian density function with the three-dimensional
mean vector μk and the 3 × 3 full covariance-matrix Σk at Cji. Thus, in
order to model the Kopt Gaussian distributions to the given coordinates
the parameters for the proportion of each of the Kopt Gaussians in the
mixture, their mean (location) and co-variance Θ ¼ θ1;…; θKopt

¼ p1;…

;pKopt
; μ1;…; μKopt

;Σ1;…ΣKopt
have to be estimated, which is done by

maximum-likelihood estimation. At this, the log-likelihood function
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Fig. 1. Left: Simulated dataset of two sets of experiments (simulation 2). Activation foci of
all experiments are projected onto the MNI single subject brain. Set A (green) contained
foci centered around the inferior frontal gyrus and the middle temporal gyrus, set B
(red) contained foci centered around the intraparietal sulcus and the middle occipital
gyrus. For both sets noise foci were generated. Right: ALE meta-analysis of the simulated
dataset. The resulting ALE map is projected onto the MNI single subject brain.
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