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Measures of complexity are sensitive in detecting disease, which has made them attractive candidates for diag-
nostic biomarkers; one complexity measure that has shown promise in fMRI is power spectrum scale invariance
(PSSI). Even if scale-free features of neuroimaging turn out to be diagnostically useful, however, their underlying
neurobiological basis is poorly understood. Using modeling and simulations of a schematic prefrontal-limbic
meso-circuit, with excitatory and inhibitory networks of nodes, we present here a framework for how network
density within a control system can affect the complexity of signal outputs. Our model demonstrates that
scale-free behavior, similar to that observed in fMRI PSSI data, can be obtained for sufficiently large networks
in a context as simple as a linear stochastic system of differential equations, although the scale-free range im-
proves when introducing more realistic, nonlinear behavior in the system. PSSI values (reflective of complexity)
vary as a function of both input type (excitatory, inhibitory) and input density (mean number of long-range con-
nections, or strength), independent of their node-specific geometric distribution. Signals show pink noise (1/f)
behavior when excitatory and inhibitory influences are balanced. As excitatory inputs are increased and de-
creased, signals shift towards white and brown noise, respectively. As inhibitory inputs are increased and de-
creased, signals shift towards brown and white noise, respectively. The results hold qualitatively at the
hemodynamic scale, which we modeled by introducing a neurovascular component. Comparing hemodynamic
simulation results to fMRI PSSI results from 96 individuals across a wide spectrum of anxiety-levels, we show
how our model can generate concrete and testable hypotheses for understanding how connectivity affects regu-
lation of meso-circuits in the brain.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Measures of complexity are sensitive in detecting disease, which has
made them attractive candidates for diagnostic biomarkers. One
straightforward way of characterizing complexity is the use of power
spectrum scale invariance (PSSI), which measures the relative frequen-
cy content of signalswhose spectra showpower lawbehavior: S(f) ∝ fβ.
In this context, the scaling exponent β is 0 (white-noise) at maximum
entropy, with β = −1, −2 representing the increasing regularity of
pink and brown noise respectively. To date, several studies have applied
complexity analyses to fMRI, and have shown that for healthy neurobi-
ological states, the entropy of neural time-series is characterized by
roughly β = −1 (S(f) ∝ 1/f), while neural time series in schizophrenia
(Rǎdulescu et al., 2012), anxiety (Tolkunov et al., 2010), and autism (Lai
et al., 2010), showa significant shift towardsβ = 0. In contrast, EEG sig-
nals from patients with epilepsy also deviate from the pink noise range,
but in this case towards greater regularity (Bhattacharya et al., 2000;
Bruzzo et al., 2008; Molteni et al., 2008; Protzner et al., 2010). The fact

that complexity should be able to identify disease states is not unique
to the brain: the diagnostic use of fractals and complexity as applied
to ECG has a long-standing history in physiology, most particularly in
its application of heart-rate variability (HRV) to detect risk for myocar-
dial infarction and heart disease (Cerutti et al., 2009; Ho et al., 1997;
Kaplan et al., 1991; Li et al., 2007; Mäkikallio et al., 1998; Mujica-
Parodi et al., 2005; Peng et al., 1994; Pincus and Goldberger, 1994;
Stanley et al., 1992; Valencia et al., 2009; Voss et al., 1995).

Even if spectral power law features of neuroimaging turn out to be
diagnostically useful, however, their underlying neurobiological basis
is poorly understood. In the case of HRV, complexity in the healthy
heart-rate is assumed to be a consequence of autonomic control. A
healthy autonomic nervous system has excitatory (primarily sympa-
thetic) and inhibitory (primarily parasympathetic) components that
work in tandem, ensuring a system that is supple enough to easily re-
spond to even small stimuli, yet constrained enough to efficiently return
to baseline. Thus, the fact that healthy heart rates fall in the pink noise
range (Peng et al., 1993, 1995), balanced between chaos and order,
seems intuitive not only from a physical and dynamical systems
perspective, in which pink noise is associated with the metastable
point at which phase transitions occur (Gisiger, 2001), but also as a
physiologically-plausible consequence of negative feedback.

NeuroImage 90 (2014) 436–448

⁎ Corresponding author at: Program in Neuroscience, Stony Brook University, Stony
Brook, NY 11794-5230, USA. Tel.: +1 631 632 1008.

E-mail address: lilianne.strey@stonybrook.edu (L.R. Mujica-Parodi).

1053-8119/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.neuroimage.2013.12.001

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://dx.doi.org/10.1016/j.neuroimage.2013.12.001
mailto:lilianne.strey@stonybrook.edu
http://dx.doi.org/10.1016/j.neuroimage.2013.12.001
http://www.sciencedirect.com/science/journal/10538119
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2013.12.001&domain=pdf


Unlike the autonomic nervous system, however, the brain's net-
works (at multiple scales) are still very much in the early stages of
being defined, and thus present a much greater challenge in terms of
identifying their relationship to the complexity of measured electro-
physiological or hemodynamic signals. Nevertheless, and in spite of nu-
merous parallel pathways within the system, there do appear to be
meso-circuits that have predominant excitatory and inhibitory compo-
nents, and that function at scales measurable in the awake animal and
human. One such meso-circuit is the prefrontal-limbic system, for
which the amygdala and prefrontal (orbitofrontal, ventromedial, dorso-
lateral) regions provide up and down-regulation of the emotional
arousal response, respectively (Baxter et al., 2000; Davis et al., 2001;
Izquierdo and Murray, 2005; LeDoux, 2000; Mujica-Parodi et al., 2009;
Phelps et al., 2004; Rosenkranz et al., 2003; Sotres-Bayon et al., 2006).

Recent studies have used randomnetwork approaches to investigate
the organizational principles of brain networks (Bullmore and Sporns,
2009), with nodes and edges defined according tomodality appropriate
scales (Sporns, 2010). Since the temporal evolution of a network is ex-
pected to depend on a combination of its hardwired circuitry and its dy-
namic coupling, much work has been directed towards understanding
the effect of the neural architecture on neural function (Boccaletti
et al., 2006). The stability and synchronization patterns of brain net-
works with coupled randomly distributed excitatory and inhibitory
neural populations have been investigated, both analytically and nu-
merically, in a variety of contexts: from biophysical models (Gray and
Robinson, 2008), to simplified systems (Siri et al., 2007). These analyses
reveal a rich range of potential dynamic regimes and transitions
(Brunel, 2000), shown to depend as much on the coupling parameters
of the network as on the arrangement of the excitatory and inhibitory
connections (Gray and Robinson, 2009). In fact, from a graph theoretical
perspective, studies support certain generic topological properties of
the human brain architecture, such as modularity, small-worldness,
the existence of hubs and other connectivity density patterns (He and
Evans, 2010).

Here, we take a similar random network based approach to investi-
gate general constraints on how dynamic activity can emerge and be
modulated by connectivity between excitatory and inhibitory nodes in
a meso-circuit with feedback (e.g., the prefrontal-limbic system),
viewed as a network of hemodynamic nodes relevant to fMRI studies.
Using modeling and simulations, we present a framework for how net-
work density within our control system can affect the complexity of sig-
nal outputs. We build upon our previous black-box models (Rǎdulescu,
2008, 2009), to include two interconnected brain networks, one excit-
atory and the other inhibitory. Themodel was designedwithin the con-
straints of three broad parameters. First, it needed to be simple enough
to analyzemathematically aswell as to simulate using reasonably-sized
(∼102-node) networks. Second, it needed to be multi-layered, such
that, at the hemodynamic scale, networks of nodes could be nested
within the interaction of the two primary brain regions. Third, the
model should schematically represent the prefrontal-limbic system in
order to inform our neuroimaging results of that same system, but con-
straints should be sufficiently general to maintain relevance for other
neural control circuits. With this last goal in mind, we chose to incorpo-
rate a neurovascular component and to characterize complexity using
PSSI, to permit comparison with prior fMRI results (Lai et al., 2010;
Rǎdulescu et al., 2012; Tolkunov et al., 2010).

The general aim was to provide a theoretical bridge between devia-
tions in signal complexity measured at the hemodynamic scale, and the
connectivity that might underlie it. Because many different models can
produce the same behavior, it is not possible to use behavior to “test”
whether a model is correct. Nevertheless, models can provide a way to
determine whether certain types of parameters and their interactions
are capable of leading to certain kinds of outcomes, generating well-
defined hypotheses that can then be tested empirically. In this case,
we wanted to identify a (neurobiologically-plausible, testable) mecha-
nism that might explain how network properties in a control system

affect the distribution of frequencies (complexity) of signal outputs.
While the control structure is not unique to the prefrontal-limbic sys-
tem, our reference to that meso-circuit wasmotivated by two consider-
ations. First, animal and human experiments had already identified
excitatory and inhibitory components,making it a reasonable candidate
for control systemsmodeling. Second, we hoped that it might be able to
inform our results from two fMRI studies of healthy individuals, one on
stress vulnerability and the other on stress resilience, which together
showed a consistent pattern between PSSI of the prefrontal-limbic sys-
tem and susceptibility to anxiety.

Methods

Modeling methods

In our model, we construct two interacting networks of nodes, such
that each node is self-damping, interacts locally with all others within
its module (thus obtaining some degree of modular internal synchroni-
zation) and also has long-range connections with a variable fraction of
the nodes in the opposite module (Fig. 1).

We represent these two interacting networks,module X andmodule
Y, by two sets of variables: xk, k = 1,…,N and yk, k = 1,…,N respective-
ly, obeying the constraints described by the following systemof 2 N first
order linear differential equations:

dxk
dt

¼ −γxxk þ
XN
p¼1

gyxAkp yp−xk
� �

þ
XN
p¼1

gxx xp−xk
� �

þ Ik tð Þ

dyk
dt

¼ −γyyk þ
XN
p¼1

gxyBkp xp−yk
� �

þ
XN
p¼1

gyy yp−yk
� �

;

ð1Þ

where the parameters represent the following: γx and γy are damping
coefficients, gxx and gyy are local connection strengths, assumed to be
the same within each module; gxy and gyx are long-range connection
strengths (from nodes in X to nodes in Y, and conversely). The damping
coefficients guarantee the decay to zero of solutions in absence of exter-
nal forcing terms. These parameters can be drawn more generally from
prescribed distributions of values (see the Modeling nonlinearity
section); in this section, however, we use for each type of parameter a
fixed (mean) value, in order to keep our formal calculation of the
spectra more tractable. Mxy and Myx represent densities of edges be-
tween X and Y. More precisely, one can defineα to be the number of ori-
ented edges from nodes in X to nodes in Y, and δ to be the number of
oriented edges from nodes in Y to nodes in X, so that 0 ≤ α, δ ≤ N2.
We consider the corresponding edge densities to be normalized as
Mxy = α/N2 and Myx = δ/N2, so that 0 ≤ Mxy ≤ Myx ≤ 1. Note that
the densities Mxy and Myx are fractions (or percentages) of N2, which
represent the maximum number of edges that could run from each
module to the opposite one.

The equations were inspired by a system of coupled springs, in
which the driving force imposed on each spring by another with

Fig. 1. Schematic representation of bimodular network for N = 5 nodes per module. The
excitatory neural population X is shown on the left; the inhibitory population Y is shown
on the right. They are both fully-connected, local sub-graphs of the full network. The dot-
ted red arrows represent the long-range X–Y connections, and the dotted blue arrows rep-
resent the Y–X connections, all generated randomly for low feed-forward and feedback
connectivity densities Myx = Myx = 25%, to maintain clarity of the illustration.
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