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Despite the growing importance of longitudinal data in neuroimaging, the standard analysis methods make re-
strictive or unrealistic assumptions (e.g., assumption of Compound Symmetry—the state of all equal variances
and equal correlations—or spatially homogeneous longitudinal correlations). While some new methods have
been proposed to more accurately account for such data, these methods are based on iterative algorithms that
are slow and failure-prone. In this article, we propose the use of the Sandwich Estimator method which first es-
timates the parameters of interest with a simple Ordinary Least Square model and second estimates variances/
covariances with the “so-called” Sandwich Estimator (SwE) which accounts for the within-subject correlation
existing in longitudinal data. Here, we introduce the SwEmethod in its classic form, and we review and propose
several adjustments to improve its behaviour, specifically in small samples. We use intensive Monte Carlo simu-
lations to compare all considered adjustments and isolate the best combination for neuroimaging data. We also
compare the SwE method to other popular methods and demonstrate its strengths and weaknesses. Finally, we
analyse a highly unbalanced longitudinal dataset from the Alzheimer's DiseaseNeuroimaging Initiative and dem-
onstrate the flexibility of the SwE method to fit within- and between-subject effects in a single model. Software
implementing this SwE method has been made freely available at http://warwick.ac.uk/tenichols/SwE.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

Introduction

Longitudinal data analysis is of increasing importance in neuroimag-
ing, particularly in structural and functional MRI studies. There were
over 1000 publications in 2012 to mention “longitudinal fMRI”, which
is 3.9% of all “fMRI” 2012 publications and up from 1.5% in 2000.2 Unfor-

tunately, while the current versions of the two most widely used pack-
ages (i.e. SPM and FSL) are computationally efficient, when they model
more than two time points per subject theymustmake quite restrictive
assumptions. In particular, FSL v5.0must assumeCompound Symmetry,
a simple covariance structure where the variances and correlations of
the repeated measures are constant over time, and a fully balanced de-
sign. SPM12 unrealistically assumes a common longitudinal covariance
structure for the whole brain. This motivates recent publications pro-
posing methods to better model neuroimaging longitudinal data
(Bernal-Rusiel et al., 2013a, 2013b; Chen et al., 2013; Li et al., 2013;
Skup et al., 2012), however, all of these methods entail iterative optimi-
sation at each voxel.

In neuroimaging, the two most widely longitudinal approaches cur-
rently used are theNaïveOrdinary Least Squares (N-OLS)modelling and
the Summary Statistics Ordinary Least Squares (SS-OLS) modelling. The
N-OLSmethod tries to account for the intra-visit correlations existing in
the data by including subject indicator variables (i.e. an intercept per
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1 Data used in preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators
within the ADNI contributed to the design and implementation of ADNI and/or provided
data but did not participate in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_
to_apply/ADNI_Acknowledgement_List.pdf.

2 Based on Pubmed searches of “longitudinal AND fMRI” in all fields, versus just “fMRI”.
This is a crude measure, but does reflect the growing role of this type of study.
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subject) in anOLSmodel. This approach is fast, but does not allow one to
make valid inferences on pure between-subject covariates (e.g., group
intercept or gender) and is valid only under a balanced design and Com-
pound Symmetry (CS). The SS-OLS method proceeds by first extracting
a summary statistic of interest for each subject (e.g., slope with time)
and then uses a group OLS model to infer on the summary measures.
This method is also fast and has the advantage of reducing the analysis
of correlated data to an analysis of independent data, but this summary
data may be highly variable as it is based on single-subject fits. In the
context of one-sample t-tests, Mumford and Nichols (2009) showed
that this approach is robust under heterogeneity, but warned that it is
probably not the case for more general regression models.

In biostatistics, the analysis of longitudinal data is a long-standing
problemand is generally performed by using either LinearMixed Effects
(LME) models or marginal models. The LMEmodels include random ef-
fects which account for the intra-visit correlations existing in the data.
Nevertheless, they require iterative algorithms which are generally
slow and may fail to converge to a correct solution. Another issue with
LME models is the complexity of specifying and fitting the model. For
example, the random effects and the covariance structure of the error
terms need to be specified (e.g., only random intercepts? Also random
slopes?) and, unfortunately, a misspecification of those may lead to in-
valid results. These are particularly serious problems in neuroimaging as
model assessment is difficult and a single model must be used for the
whole brain. As a consequence, the use of LMEmodels in neuroimaging
may be prohibitively slow, andmay lead to statistical images withmiss-
ing or invalid results for some voxels in the brain. To limit the conver-
gence issues, one may be tempted to use a LME model with only a
random intercept per subject. Unfortunately, like the N-OLS model,
this model assumes CS which is probably not realistic, especially for
long studies carried out over years and with many visits. In contrast,
the marginal modelling approach implicitly accounts for random ef-
fects, treats the intra-visit correlations as a nuisance and focuses the
modelling only on population averages. They have appealing asymptot-
ic properties, are robust againstmodelmisspecification and, as there are
no explicit random effects, are easier to specify than LMEmodels. How-
ever, they only focus on population-averaged inferences or predictions,
typically require iterative algorithms and assume large samples.

Recently, Bernal-Rusiel et al. (2013a) proposed the use of LME
models to analyse longitudinal neuroimaging data, but only on a small
number of regions of interest or biomarkers, Chen et al. (2013) and
Bernal-Rusiel et al. (2013b) extended the use of the LME models to
mass-univariate settings. In particular, Bernal-Rusiel et al. (2013b) pro-
posed the use of a spatiotemporal LME method based on a parcellation
of the brain into homogeneous areas; in each area, they model the full
spatiotemporal covariance structure by assuming a common temporal
covariance structure across all thepoints and a simple spatial covariance
structure. Skup et al. (2012) and Li et al. (2013) proposed to usemargin-
al models to analyse neuroimaging longitudinal data. Specifically, Skup
et al. (2012) proposed aMultiscale Adaptive GeneralisedMethod ofMo-
ments (MA-GMM) approach which combines a spatial regularisation
methodwith amarginalmodel called GeneralisedMethods ofMoments
(GMM;Hansen, 1982; Lai and Small, 2007) and Li et al. (2013) proposed
a Multiscale Adaptive Generalised Estimating Equations (MA-GEE) ap-
proach which also combines a spatial regularisation method, but with
a marginal model called Generalised Estimating Equations (GEE; Liang
and Zeger, 1986). Thanks to their appealing theoretical asymptotic
properties, the two latter methods seem very promising for analysing
longitudinal neuroimaging data. Nevertheless, like the LME models,
they require iterative algorithms, which make them slow, and – due
to the fact that they rely on asymptotic theoretical results – their use
may be problematic in small samples.

In this paper, we propose an alternative marginal approach. We use
a simple OLS model for the marginal model (i.e. no subject indicator
variables) to create estimates of the parameters of interest. For standard
errors of these estimates, we use the so-called Sandwich Estimator

(SwE; Eicker, 1963) to account for the repeated measures correlation.
The main property of the SwE is that, under weak conditions, it is as-
ymptotically robust against misspecification of the covariance model.
In particular, this robustness allows us to combine the SwE with a sim-
ple OLSmodelwhichhas no covariancemodel. Thus, thismethod is easy
to specify and, with no need for iterative computations, is fast and has
no convergence issues. Moreover, the proposed method can deal with
unbalanced designs and heterogeneous variances across time and
groups (or even subjects; more below on this). In addition, note that
the SwE method can also be used for cross-sectional designs where re-
peatedmeasures exist, such as fMRI studies wheremultiple contrasts of
interests are jointlymodelled, or even for family designswhere subjects
from the same family cannot be assumed independent. Nevertheless,
like the MA-GMM and MA-GEE methods, the SwE method relies on as-
ymptotic theoretical results, guaranteeing accurate inference only in
large samples. Therefore, we also review and propose small sample ad-
justments that improve its behaviour in small samples.

The remainder of this paper is organised as follows. Starting from the
LME model and its implied marginal model, we introduce the SwE
method in its standard form. Then, we review and propose different ad-
justments to the SwE in order to improve its behaviour, mainly in the
case of small samples. Finally, we assess the SwEmethodwith intensive
Monte Carlo simulations in a large range of settings and, more particu-
larly, by analysing real brain images acquired as part of the Alzheimer's
Disease Neuroimaging Initiative (ADNI; Mueller et al., 2005).

Methods

The Linear Mixed Effects model and the marginal model

Using the formulation of Laird andWare (1982), the LME model for
individual i is

yi ¼ Xiβ þ Zibi þ ϵi ð1Þ

where yi is a vector of ni observations for individual i = 1,2,…,m, β is a
vector of p fixed effects which is linked to yi by the ni × p design matrix
Xi, bi is a vector of r individual random effectswhich is linked to yi by the
ni × r design matrix Zi, and ϵi is a vector of ni individual error terms
which is normally distributed with mean 0 and covariance Σi. The indi-
vidual random effects bi are also normally distributed, independently of
ϵi, with mean 0 and covariance D. Typically, the p fixed effects might in-
clude an intercept per group, a linear effect of time per group, a quadrat-
ic effect of time per-group or per-visit measures effects like, in the case
of Alzheimer's Disease, the MMSE (Mini-Mental State Examination)
score. The r random effects usually include a “random intercept” for
each subject (modelled by a constant in Zi) andmay also include a “ran-
dom slope” for each subject.

Instead of posing a model for each subject consisting of (common)
fixed and (individual) random components, we can fit a model with
only fixed components and let the random components induce struc-
ture on the random error. This is the so-called marginal model, which,
for subject i, has the form

yi ¼ Xiβ þ ϵ�i ð2Þ

where the individual marginal error terms ϵi∗ have mean 0 and covari-
ance Vi. Typically, the covariance is taken to be unstructured, but if
data arise as per the LME model specified above, then Vi = Σi + ZiDZi.
We will denote by X the grand design matrix, the n × p stacked matrix
of the m Xi's, where n = ∑ i ni is the total number of observations.

In LME models, the randomness of the data is modelled by both the
random effects bi and the error terms ϵi. The random effects bi have an
important impact on the variance modelling and have to be chosen
carefully. This makes LME models quite difficult to specify in practice.
In contrast, in the marginal model, all the randomness is treated as a
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