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Characterization of complex shapes embedded within volumetric data is an important step in a wide range of
applications. Standard approaches to this problem employ surface-based methods that require inefficient, time
consuming, and error prone steps of surface segmentation and inflation to satisfy the uniqueness or stability of
subsequent surface fitting algorithms. Herewe present a novelmethod based on a sphericalwave decomposition
(SWD) of the data that overcomes several of these limitations by directly analyzing the entire data volume,
obviating the segmentation, inflation, and surface fitting steps, significantly reducing the computational time
and eliminating topological errors while providing a more detailed quantitative description based upon a more
complete theoretical framework of volumetric data. The method is demonstrated and compared to the current
state-of-the-art neuroimagingmethods for segmentation and characterization of volumetricmagnetic resonance
imaging data of the human brain.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Characterization of complex shapes embedded within volumetric
data is an important step in a wide range of applications. In neuroimag-
ing applications, for example, quantitative descriptions of brain mor-
phology play a critical role in the characterization of neurodegenerative
disease progression. Standard approaches to this problem employ sur-
face-based methods that require an initial segmentation of a surface
and often a subsequent inflation of this surface to satisfy the uniqueness
or stability of subsequent surface fitting algorithms. These methods are
inefficient and time consuming because of the need for segmentation
prior to fitting and the computationally intensive inflation process, the
latter of which being also a significant source of errors due to creation
of topological defects. Here we present a novel method that overcomes
several of these limitations by directly analyzing the entire data volume,
obviating the segmentation, inflation, and surface fitting steps, signifi-
cantly reducing the computational time and eliminating topological
errors while providing a more detailed quantitative description based
upon a more complete theoretical framework of volumetric data. The
method is based on a spherical wave decomposition (SWD) of the data
and we present an application of this technique to volumetric magnetic
resonance imaging (MRI) data of the human brain.

This novel 3D signature-based method produces rotationally invari-
ant compact shape descriptors that can be efficiently computed over 3D
data sets without the need for explicit preliminary surface segmenta-
tion. The approach is appropriate for compact representation, fast

decomposition, and automated segmentation and morphometry analy-
ses of volumetric magnetic resonance imaging data. The SWD represen-
tation uses a direct expansion of volumetric data in a linear combination
of basis functions that include both angular (spherical harmonics) and
radial (spherical Bessel functions) parts. The 3D descriptors are easily
archived and facilitate statistical comparison at multiple spatial scales:
low frequency information describes gross shape, while high frequency
information captures more details as well as internal structures.

Direct computation of the SWD over a full volume of data is compu-
tationally expensive, and thus we developed several fast transforms ap-
plicable both to spherical harmonics and to spherical Bessel functions
that allowed a fast and robust numerical implementation of the SWD
that is applicable to a wide range of geometries, independent of affine
transformations, for large, noisy volumetric data sets. We demonstrate
this method on a high resolution MRI data set of a normal human
brain by comparing it to the current state-of-the-artmethods employed
in neuroimaging for segmentation of gray and white matter and shape
characterization of the cortical surface.

Background

Continuing progress in the development of advanced non-invasive
imaging methods such as MRI and CT have facilitated the acquisition
of very high resolution, high contrast volumetric data that offer the
possibility of non-invasive highly informative assessment of brain
morphology. However, these more informative and complex data put
a greater burden on the computational methods needed to analyze
them. This is particularly true of MRI data which has a wide range of
contrast mechanisms by which it can produce very high contrast be-
tween complex soft tissues of different types.
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In concert with these advancements in imaging technologies, ad-
vances in computational methods, particularly in volume graphics and
computer vision have resulted in tremendous increase in computational
methods for morphology characterization and segmentation for com-
parative morphometry for both basic neuroscience studies on brain
anatomyand clinical studies of disease characterization and progression
in humans, and for a broad range of studies in comparative biology.

In comparative biology, geometric morphometrics has emerged as
an important tool for analysis, becoming commonly used to quantify
morphology, wherein landmark points are identified in photographic
(2D) images and then are fit to a warpedmesh that provides a common
coordinate system in which different specimens can be compared
(Zelditch et al., 2004). These methods allow users to define key points
of knownmorphological interest and statistically comparemorphologies
based on these points. However, the current predominant methods are
based on 2D digital images or on 3D surfaces and are not readily applied
to volumetric 3D data, such as those acquired by MRI or CT.

Recent advances in segmentation techniques weremostly originated
from fuzzy logic and supervised and non-supervised clustering (Barra
and Boire, 2000; Lin et al., 2012) both in 2D (Barra and Boire, 2001;
Cocuzzo et al., 2011; Pedoia and Binaghi, 2012; Razlighi et al., 2012;
Suri, 2001; Zavaljevski et al., 2000) and 3D (He et al., 2011; Kiebel
et al., 2000; Klauschen et al., 2009; Popuri et al., 2012; Wels et al.,
2011). Unfortunately, in spite of all advances none of these methods
are able to provide truly robust and automated segmentation.

Themost straightforward approach to segmentation is thresholding,
which involves finding an intensity value, the threshold, that distin-
guishes features of interest. Thismethod ismost frequently used to create
a binary segmentation of an image, but it is also possible to distinguish
three or more intensity classes using multithresholding (Zavaljevski
et al., 2000). Thresholding works particularly well with imaging modali-
ties such as CT data where images are often essentially binary between
bone (bright) and soft tissue (very dark) and segmentation can be practi-
cally automated. Automatedmethods forMRI data, however, are exceed-
ingly difficult because of adjoining regions with similar values (i.e. low
contrast), partial voluming (multiple tissue types within a single voxel),
image noise, and intensity inhomogeneities, all of which are common to
MR images (Atkins and Mackiewich, 2000; Pham et al., 2000).

Region growingmethods extract connected regions in images based
on criteria that can include both intensity and edges. Thesemethods are
susceptible to noise, which can create artificial divisions between con-
nected regions, and partial volume effects, which canmerge disconnect-
ed regions. These effects can be reduced by limiting growth to topology-
preserving deformations (Mangin et al., 1995), but user input is still
required to select seed regions. Clustering algorithms alternate between
segmenting the image and characterizing the properties of each seg-
mented class, iterating until a stopping criterion is reached (Barra and
Boire, 2000, 2002; Liang et al., 1994; Pachai et al., 2001; Popuri et al.,
2012). Clustering is generally susceptible to both noise and image inho-
mogeneities, though robustness to intensity inhomogeneities has been
demonstrated (Pham and Prince, 1999). Given a Bayesian prior model,
Markov random fieldmodels can be incorporated in clusteringmethods
to minimize susceptibility to noise (Li, 1994).

Atlas-guided approaches provide an option that may be feasible
(Klein et al., 2009). In such methods, a linear or non-linear transforma-
tion is found mapping the pre-segmented atlas image to the target
image. Thus the tissue classification problem is changed to a registration
or deformation problem. However, to effectively use atlas-guided
methods very large and detailed databases or atlases of reference ob-
jects are needed. This puts the onus of the quantitation on an accurate
and reproducible method for atlas creation.

One important and rather successful direction in brain quantifying
and characterization has emerged from analyses of parameterization of
surfaces for 3D shape description using spherical harmonic (SPHARM)
representation (Brechbühler et al., 1995; Kazhdan et al., 2003). Shape
signatures can be created using the SPHARM decomposition at several

concentric spheres or just at a single surface that represents a highly con-
voluted geometry of the cerebral cortex. In the SPHARM method any
function f is assumed to be defined on a sphere, f(θ, ϕ), and decomposed
as the sum of its spherical harmonics:

f θ;ϕð Þ ¼
X∞
l¼0

Xl

m¼−l

f lmY
m
l θ;ϕð Þ ð1Þ

with low values of l corresponding to lower frequency information.
Since L2-norms of spherical functions are not affected by rotations,
a rotationally-invariant shape signature may be given as SH(f) =
{∥ f0(θ, ϕ)∥, ∥ f1(θ, ϕ)∥, …}, where the fl(θ, ϕ) = ∑ m = ‐l

l flmYl
m(θ, ϕ) are

the frequency components of f. We note that an alternate signature
can be calculatedmore quickly and directly from the coefficients, defin-
ing SH(f)= {A0, A1,…}, where the A1 are L2-norms of all the coefficients
flm at each l : Al=∑ m = − l

l |flm|2. The spherical harmonic Ylm are con-
tinuous functions, but for computational applications, f is only sampled
at NΩ discrete angles. To create a shape signature for a 3D object, the
shape is sampled atNΩ angles andNr radii, SH is calculated at each radius
up to l= Lmax, and the result is represented as a 2D grid of size Lmax× Nr.
This SPHARM application described by Kazhdan et al. (2003) was more
general shape classification using “clean” data (e.g. a set of 1890 “house-
hold” objects), but in noisy MRI data the SPHARM deals with noise auto-
matically, since the noise does not appear in the lower frequencies that
dominate shape descriptions. Many internal structures remain visible
in data reconstructed from the signatures, while the signatures them-
selves require significantly less storage space than the original data.
This general method was improved further by appropriate filtering (i.e.
using exponentially weighted Fourier or spherical harmonic series,
Chung et al., 2007; Chung, Dalton et al., 2008; Chung, Hartley et al.,
2008). The weighting reduces a substantial amount of the so called ring-
ing (or Gibbs) phenomenon and aliasing (or Moiré) patterns (Gelb,
1997), both appearing because of relatively slow convergence of Fourier
series when used for representing discontinuous or rapidly changing
measurements.

Overall thesemodifications of the SPHARMmethod with filtering or
exponential weighting (Chung et al., 2007; Chung, Dalton et al., 2008;
Chung, Hartley et al., 2008) allowed successful parameterization of the
cortical surface including characterization of the local difference in
gray matter concentration. Nevertheless, techniques based on the
SPHARM morphometry method — tensor-based morphometry — uses
the cortical surface already segmented out of noisy MRI data and quan-
tifies the amount of graymatter only in a narrow layer along this surface
via the concept of a local area element. Hence, the analysis cannot be
directly used for volumetric MRI data.

An extension of spherical harmonic decomposition that naturally
allows incorporating of complete 3D volume data has been known in
various areas of physics for quite a long time, i.e. in quantum physics
for description of waveform solutions of the Shrödinger equation
(Gersten, 1971), in atomic and nuclear physics for approximation of
Coulomb scattering function (Barnett, 1981, 1996), and in astrophysics
for analyses of anisotropies of microwave background, as well as for
quantum gravity (Abbott and Schaefer, 1986; Binney and Quinn,
1991; Leistedt et al., 2012).

In this paper we present the spherical wave decomposition (SWD)
method, that combines angular-only basis functions of the SPHARM
with spherical Bessel functions as the radial basis functions, forming
the complete 3D basis. This basis is appropriate for expanding any func-
tion f(r, θ, ϕ) defined inside a sphere of radius a. The expansion coeffi-
cients have the advantage of allowing characterization of the internal
structure simultaneously with the overall shape. Because they are not
surface-based, there is noneed tofix topological discrepancies or to pro-
vide surface-based segmentation first. Thus this approach offers a more
complete description of noisy volumetric data and is also more efficient
to compute. We present timings for our implementation of the SWD
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