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Many studies have examined brain states in an effort to predict individual differences in the capacity for learning,
with overall moderate results. The present study investigated how measures of cortical network function ac-
quired at rest using dense-array EEG (256 leads) predict subsequent acquisition of a newmotor skill. Brain activ-
ity was recorded in 17 healthy young subjects during 3 min of wakeful rest prior to a single motor skill training
session on a digital version of the pursuit rotor task. Practice was associated with significant gains in task perfor-
mance (% time on target increased from 24% to 41%, p b 0.0001). Using a partial least squares regression (PLS)
model, coherence with the region of the left primarymotor area (M1) in resting EEG data was a strong predictor
ofmotor skill acquisition (R2=0.81 in a leave-one-out cross-validation analysis), exceeding the information pro-
vided by baseline behavior and demographics. Within this PLS model, greater skill acquisition was predicted by
higher connectivity betweenM1 and left parietal cortex, possibly reflecting greater capacity for visuomotor inte-
gration, and by lower connectivity betweenM1 and left frontal–premotor areas, possibly reflecting differences in
motor planning strategies. EEG coherence, which reflects functional connectivity, predicts individual motor skill
acquisition with a level of accuracy that is remarkably high compared to prior reports using EEG or fMRI
measures.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Individuals demonstrate significant variability in motor learning
(Ackerman, 1987; King et al., 2012). The ability to predict an individual's
learning skill could have utility in a number of settings, including clinical
(Stinear, 2010). Previous studies have identified neural correlates of var-
iability during motor learning (Tomassini et al., 2011), and both struc-
tural and functional neuroimaging methods have been evaluated as
predictors of motor learning (Mathewson et al., 2012; Vo et al., 2011).
However, the ability to accurately predict learning differences, in healthy
or diseased populations, remains modest, for example, with fMRI-
derived resting-state connectivity accounting for 35% (Wang et al.,
2010) to 66% (Baldassarre et al., 2012) of inter-individual variability.

Recent resting-state studies have provided new inroads for measur-
ing differences in brain function in relation to behavior across individual
subjects (Deco et al., 2011). Markers of brain function at rest are influ-
enced by experience (Lewis et al., 2009) and reflect the functional orga-
nization of brain networks that are selectively engagedduring behavioral
tasks. Organization of brain networks at rest has also been correlated
with subsequent behavioral performance (Hampson et al., 2006;

Tambini et al., 2010). However, there is limited study of how inter-
individual heterogeneity in brain functional connectivity at rest relates
to learning and plasticity.

Combined EEG and fMRI studies have reported that specific combi-
nations of EEG rhythms correspond with low frequency activity of spe-
cific resting-state networks (Mantini et al., 2007). Thus, EEG metrics
also may be useful for characterizing brain states and relating them to
behavioral variance. One potentialmetric is spectral power, whichmea-
sures synchronization within cortical regions (Nunez and Srinivasan,
2006). A recent EEG study found that a regional measure of spectral
power in a frontal electrode (Fz) and a parietal electrode (Pz) obtained
early during training predicted 53% of the variance in subsequentmotor
learning (Mathewson et al., 2012). An alternate EEG-based metric is
spectral coherence, which measures synchronization between regions
and thus can capture cortical connectivity. In various studies of motor
function using EEG coherence, changes in brain connectivity have
been observed in the β (20–30 Hz) frequency range (Deeny et al.,
2009; Pfurtscheller et al., 1996; Tropini et al., 2011).

Measures of connectivity, as compared to assessments of focal brain
regions, have an improved ability to represent complexity in human
cortical processing and as a result have a stronger relationship with
many types of behavior (Bullmore and Sporns, 2009). Therefore, the
present study hypothesized that EEG coherencemeasures of motor net-
work connectivity in the β band duringwakeful rest would predict sub-
sequent motor skill acquisition in a single motor skill training session.
Secondarily, it was hypothesized that a PLS approach for deriving
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brain–behavior relationships would perform better than an ROI based
approach. An additional secondary hypothesis was that β band coher-
ence duringmovement (in the training session)would also be a predic-
tor of subsequent motor skill learning.

Materials and methods

Experimental design

Healthy subjects, aged 18–30 years and right-handed (Edinburgh
Handedness Inventory) were recruited. This study was approved by
the University of California, Irvine Institutional Review Board. Each sub-
ject gave written informed consent.

The experiment took place across a single session. Participants sat in
a chair facing a computermonitor atop a desk. In order tominimize var-
iation across participants, awake resting-state EEG was acquired for
3 min (EEG-Rest) at 1000 Hz prior to any description or practice of the
motor task. Next, each individual's maximum arm movement speed
was measured, standardized instructions for the visuomotor skill task
were provided, and a baseline assessment of the motor skill task was
obtained (Test 1), during which EEG was again recorded (EEG-Test 1).
Next, two blocks of practice and two additional blocks of motor skill
task testingwith EEG recordingwere completed in an interleavedman-
ner (Fig. 1A), fromwhichmeasures of motor skill learningwere obtain-
ed. Arm movements were recorded by a USB 8″ × 6″ digitizing pen
tablet (Genius MousePen, Taipei, Taiwan).

To measure maximum arm movement speed, two 20-pixel target
circles were displayed on the monitor, 1300 pixels apart. Participants
were instructed to make horizontal movements between the centers
of each circle, as rapidly as possible. The maximum number of targets
hit during a 10 s period was recorded, and a maximum movement
speed was calculated. The speed test was repeated three times, and
the maximum was used to determine the speed that motor task target
moved for each individual participant.

Themotor skill task used in the current studywas a digital version of
the classic pursuit rotor task motor learning paradigm (Adams, 1952;
Grafton et al., 1994). Subjects viewed a computer monitor on which a
target (a 20-pixel diameter red circle) moved, back and forth, along a
fixed arc (yellow, spanning a 450-pixel wide and 200-pixel long path),
at 50% of each individual's maximum movement speed. A cursor (15-
pixel diameter white circle) was also present, the position of which
was controlled by subjects using the digitizing tablet pen held by the

right hand (Fig. 1B). Subjects were instructed to keep the cursor on
the target as the target moved along the arc (Fig. 1C).

Participants directed cursormovement bymoving the pen tip across
the surface of the USB digitizing tablet, maintaining contact of the pen
tip on the tablet surface at all times during task performance. To ensure
arm movements were standardized across participants and were re-
stricted to right shoulder internal/external rotation only, a soft strap
was placed on the distal part of the right forearm, minimizing shoulder
abduction, and awrist bracewas placed across the distal right arm,min-
imizingwrist flexion/extension (Fig. 1B). Subjects sat with both feet flat
on the floor and were not permitted to move at other body joints.

Performance was quantified as percent time that the cursor position
was N50% overlapping with target position (% on Target, Fig. 1C). A total
of three test blocks and two interleaved practice blocks were completed
(Fig. 1A). Each test block consisted of a 50 s rest period followed by an
80 s task period. Each practice block consisted of four 20-s task periods
interleaved with three 50-s rest periods. Degree of motor skill acquisi-
tion was calculated from absolute change in % on Target from Test 1 to
Test 3 (% Improvement).

EEG acquisition

Dense-array surface EEGwas acquired using a 256-leadHydrocel net
(Electrical Geodesics, Inc., Eugene, OR). Awake resting-state EEGwas ac-
quired for 3 min. EEG signal was referenced to Cz during recording and
re-referenced to the average of all leads for analysis; an advantage of
this approach is that it minimizes common reference effects. A ground
electrode was not used. EEG signal was recorded rawwith no bandpass
filter used.

During EEG-Rest, participants were asked to hold still with the fore-
arms resting on the anterior thigh and to direct their gaze at a fixation
cross displayed on the computer monitor. During EEG-Test 1, and sub-
sequent recordings (EEG-Test 2 and EEG-Test 3), participants used
their right hand to keep the cursor on the target, as above. Data were
collected at 1000 Hz using a high input impedance Net Amp 300 ampli-
fier (Electrical Geodesics) and Net Station 4.5.3 software (Electrical
Geodesics).

EEG preprocessing

EEG data were exported to Matlab (7.8.0, MathWorks, Inc., Natick,
MA) for preprocessing. The continuous EEG signal was low-pass filtered
at 50 Hz, segmented into non-overlapping 1-s epochs, and detrended.

Fig. 1. Experimental setup. A. Experiment timeline. B. Digitizing pen tablet and presentation laptop. C. Example of cursor on target. D. Example of cursor off target. E. The % Improvement
(Test 3 − Test 1) on the motor task with practice was statistically significant (mean ± S.E.; repeated measures ANOVA, F(2,15) = 5.05, p b 0.0001).
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