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19A wealth of methods has been developed to identify natural divisions of brain networks into groups or modules,
20with one of the most prominent being modularity. Compared with the popularity of methods to detect commu-
21nity structure, only a fewmethods exist to statistically control for spuriousmodules, relying almost exclusively on
22resampling techniques. It is well known that even random networks can exhibit high modularity because of in-
23cidental concentration of edges, even though they have no underlying organizational structure. Consequently, in-
24terpretation of community structure is confounded by the lack of principled and computationally tractable
25approaches to statistically control for spurious modules. In this paper we show that the modularity of random
26networks follows a transformed version of the Tracy–Widom distribution, providing for the first time a link be-
27tween module detection and random matrix theory. We compute parametric formulas for the distribution of
28modularity for randomnetworks as a function of network size and edge variance, and show thatwe can efficient-
29ly control for false positives in brain and other real-world networks.
30© 2014 Published by Elsevier Inc.
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35 1. Introduction

36 The complexity in the macroscopic behavior of brain networks has
37 been highlighted and quantified in a number of neuroscience studies
38 in recent years (Bullmore and Sporns, 2009; Rubinov and Sporns,
39 2010). Amultitude of topological features has been reported in the liter-
40 ature, includingmodular structures (Bullmore and Bassett, 2011; Chang
41 et al., 2012), hierarchical patterns (Meunier et al., 2009; Salvador et al.,
42 2005), distribution of hubs (Dimitriadis et al., 2010; Sporns et al., 2007;
43 Tomasi and Volkow, 2011), and core extraction (Hagmann et al.,
44 2008a). It has also been shown that brain networks follow a small-
45 world property both from a functional (Bassett and Bullmore, 2006;
46 Van den Heuvel et al., 2008) and a structural perspective (Vaessen
47 et al., 2010; Wang et al., 2012). Recent findings have revealed alter-
48 ations of brain network topology with aging (Chen et al., 2011), brain
49 development (Fan et al., 2011), and pathologies of schizophrenia, au-
50 tism, and epilepsy (Alexander-Bloch et al., 2010; Chavez et al., 2010;
51 Rudie et al., 2013), underscoring the importance of networks as bio-
52 markers of the normal and diseased brain.
53 Fundamental to identification of the architecture and organization of
54 brain networks is the detection of modules, also called communities or
55 clusters. In the context of graph theory, modules are groups of intercon-
56 nected nodes, typically regions of parcellated cerebral cortex, that share
57 common properties or have similar function within the network. Iden-
58 tification of modules can facilitate the prediction and discovery of

59previously unknown connections and components, and show how the
60network constitutes a collective and integrative system. Individual
61nodes can be classified according to their structural position in the
62modules; nodes with central position are essential for the stability and
63robustness of their corresponding modules, and nodes lying at the
64boundaries contribute to interactions across communities. Studies of
65network topology can reveal important properties of brain organization,
66for exampling revealing potential vulnerabilities, or in the case of
67hierarchical networks, possibly encoding clues to the evolution of the
68brain (Meunier et al., 2010).
69Underscoring the central role of module detection, numerous
70methods have been proposed to identify community structure in brain
71networks. Perhaps the most popular is modularity (Newman, 2006),
72which compares the network against a null model and favors within-
73module connections when edges are stronger than their expected
74values. Divisions that increase modularity are preferred because they
75lead to modules with high community structure. We recently proposed
76a new method to compute network null models based on conditional
77expected probabilities and provided exact analytical solutions for spe-
78cific parametric distributions (Chang et al., 2012). Our models enhance
79module detection, provide a principled approach to deal with networks
80with negative connections, and accurately represent the topology of
81networks without necessitating self-loops.
82Despite the popularity of modularity methods, the identification of
83stopping criteria for graph division and the evaluation of the statistical
84significance ofmodules remain largely unaddressed. Given that random
85networks can demonstrate spurious modules due to incidental concen-
86tration of edges, even though they have no underlying organizational
87structure, controlling for false positives in community detection is of
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88 paramount importance. This is even more evident in large networks
89 where the number of possible divisions increases rapidly with the net-
90 work size (Guimerá et al., 2004; Karrer et al., 2008). Therefore,
91 confirming the statistical significance of any identified modules is es-
92 sential before discussing other findings related to those structures.
93 Existing methods that control for spurious modular structures fall
94 into three categories. The first category relies on creating comparable
95 random networks in order to compute an empirical null distribution
96 of modularity and establish a threshold that controls error rate at a
97 nominal level, typically 5%. For example, Alexander-Bloch et al. (2010)
98 estimated thedistributionofmodularity using two types of randomnet-
99 works, the Erdős and Rényi (1960) randomgraphs or randomly rewired
100 networks (Maslov and Sneppen, 2002). Meunier et al. (2009) created
101 random networks by randomizing either the elements of the adjacency
102 matrix, or the time points of the time series whose pairwise correlation
103 defined the edges of a graph. He et al. (2009) generated a set of node-
104 and degree-matched random graphs for comparison. Reichardt and
105 Bornholdt (2006) computed the z-values of modularity after estimating
106 its empirical distribution through multiple random network realiza-
107 tions. Mirshahvalad et al. (2013) studied how different resampling
108 schemes influence significance analysis.
109 The second category of methods also relies on resampled networks.
110 Here the aim is tomeasure the robustness ofmodular structures on net-
111 work perturbations. For instance, Karrer et al. (2008) proposed a meth-
112 od to perturb network connections andmeasure the resulting change in
113 community structure usingmutual information. Hu et al. (2010) offered
114 a generalization to this approach by incorporating together the number
115 of clusters, content of the clusters, and random perturbation parame-
116 ters. Mirshahvalad et al. (2012) studied the robustness of large sparse
117 networks by randomly adding extra links based on local information.
118 Lancichinetti et al. (2010) evaluated the importance of single communi-
119 ties using combinatorics and a modified null model. Seifi et al. (2012)
120 measured the significance of modules based on the stability of struc-
121 tures from either randomly perturbed networks or different initializa-
122 tion of non-deterministic community detection techniques.
123 Since all the above methods depend on edge rewiring and random
124 network realizations, they are network-specific and do not generalize.
125 The computational cost of generating multiple realizations of random
126 networks can be significant, and even prohibitive for very large net-
127 works in the order of thousands of nodes. The third category ofmethods
128 offers analytical closed-form solutions for the distribution ofmodularity
129 in random networks. To the best of our knowledge, due to the complex
130 form of the modularity function, there exists only one closed form solu-
131 tion for a specific case. Reichardt and Bornholdt (2007) used the Potts
132 spin-glass model to get a theoretical prediction for modularity value in
133 binary random graphs, either Erdős–Rényi type or scale-free random
134 networks. However, their formula is restricted to binary sparse net-
135 works, which prevents its use with most real-world networks.
136 Given the lack of a principled analytical approach or computationally
137 efficient algorithms to control for false positives in networkmodule de-
138 tection, much of the literature overlooks statistical inference in net-
139 works. To address this problem we provide a new analytical approach
140 for statistical inference in module detection. Modularity belongs to the
141 wide class of spectral clustering algorithms (Von Luxburg, 2007),
142 which use the extreme eigenvalues and corresponding eigenvectors of
143 a spectral decomposition to partition data into groups with similar
144 properties. To evaluate the statistical significance of spectral clustering
145 results, we need to compare the spectral decomposition of a given net-
146 work against those from random networks. Since networks are repre-
147 sented by their adjacency matrix, a connection between random
148 networks and randommatrix theory is natural. The eigenvalue distribu-
149 tion of a specific type ofmatrices, Gaussian randomensembles, has been
150 thoroughly studied in random matrix theory (Tao, 2012; Tracy and
151 Widom, 2000). In this paper,we provide for thefirst time a linkbetween
152 module detection and random matrix theory by showing that the
153 Tracy–Widom mapping of the largest eigenvalue of Gaussian random

154ensembles can be modified to predict the distribution of the largest ei-
155genvalue of matrices used for modularity-based spectral clustering.
156Using this finding, we derive an accurate parametric form of the distri-
157bution of modularity in random networks and compute formulas that
158control the type I error rate at a 5% level onmodularity-based partitions
159of weighted graphs. Our modeling is valid for a wide range of network
160sizes and the utility of the method is all the more important for larger
161networks, given that resamplingmethods can be computationally infea-
162sible in such networks. We demonstrate our method in the brain and
163other real-world networks.

1642. Methods

165In this section,we first describe themodularity partitioning problem
166and its solution using spectral decomposition.We thenmotivate the use
167of the maximum eigenvalue of a difference matrix (adjacency matrix
168minus the nullmodel) as a surrogate ofmodularity. Using a transformed
169Tracy–Widom distribution, we derive empirical parametric formulas
170that accurately predict the distribution of the maximum eigenvalue.
171We estimate our model parameters through Monte Carlo simulations
172of weighted Gaussian random networks.

1732.1. Overview to modularity

174Large-scale brain networks are typically constructed by assigning
175nodes to represent regions of parcellated cerebral cortex and edges to
176represent the pairwise interactions or connection across these regions.
177These connections could be based on structural data, for example
178white matter fiber-tracts derived from diffusion data, or functional cou-
179pling measured between time series of brain activation. Assume a brain
180network of N nodes with weighted undirected connections and an un-
181derlyingmodular structure, as exemplified in Fig. 1. The network is rep-
182resented with an adjacency matrix A with elements Aij indicating the
183connection strength across nodes i and j. The degree vector k has ele-
184ments ki = Σj Aij, equal to the sum of all edge strengths associated
185with node i. The total sum of edge weights of the network is denoted
186asm = 1

2Σiki.
187Modularitywas originally introduced as ameasure of the quality of a
188particular division of a network (Newman and Girvan, 2004), but later
189became a key graph clustering algorithm, after recognizing its direct
190maximization using spectral graph partitioning (Newman, 2006).
191According to modularity, the community structure of the network is
192compared against a null network, i.e. a randomized network with the
193same number of nodes and node degrees but otherwise no underlying
194structure. If a natural division of a network exists, we should expect
195within-module connectionsAij to be stronger than their expected values
196Eij, and the opposite should hold true for between-module connections

Fig. 1. Brain networks and modularity.
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