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22Wepresent a novel approach to the third order spectral analysis, commonly called bispectral analysis, of electro-
23encephalographic (EEG) and magnetoencephalographic (MEG) data for studying cross-frequency functional
24brain connectivity. The main obstacle in estimating functional connectivity from EEG and MEG measurements
25lies in the signals being a largely unknown mixture of the activities of the underlying brain sources. This often
26constitutes a severe confounder and heavily affects the detection of brain source interactions. To overcome this
27problem, we previously developed metrics based on the properties of the imaginary part of coherency. Here,
28we generalize these properties from the linear to the nonlinear case. Specifically, we propose a metric based
29on an antisymmetric combination of cross-bispectra, which we demonstrate to be robust to mixing artifacts.
30Moreover, our metric provides complex-valued quantities that give the opportunity to study phase relationships
31between brain sources.
32The effectiveness of the method is first demonstrated on simulated EEG data. The proposed approach shows a
33reduced sensitivity tomixing artifactswhen comparedwith a traditional bispectralmetric. It also exhibits a better
34performance in extracting phase relationships between sources than the imaginary part of the cross-spectrum for
35delayed interactions. The method is then applied to real EEG data recorded during resting state. A cross-
36frequency interaction is observed between brain sources at 10 Hz and 20 Hz, i.e., for alpha and beta rhythms.
37This interaction is then projected from signal to source level by using a fit-based procedure. This approach high-
38lights a 10–20 Hz dominant interaction localized in an occipito-parieto-central network.
39© 2014 Published by Elsevier Inc.
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44 Introduction

45 Electroencephalography (EEG) andmagnetoencephalography (MEG)
46 are noninvasive techniques which provide the opportunity to directly
47 measure ongoing brain activity with very high temporal but relatively
48 low spatial resolution. While in the past decades the main focus of
49 EEG/MEG studies was on the analysis of event related potentials, i.e. the
50 average brain response to a given stimulus, more recently the variability
51 of brain activity has attracted many researchers. The recent interest in
52 this field reflects the understanding that a mere localization of specific
53 brain activities is far from sufficient to understand how the brain
54 operates, but that it is necessary to study the brain as a network. In this
55 framework, the analysis of brain rhythms has been recognized as a prom-
56 ising approach since coherent neuronal activity has been hypothesized to
57 serve as a mechanism for neuronal communication (Fries, 2009; Gross
58 et al., 2006; Miller et al., 2009; Tallon-Baudry et al., 1996; Womelsdorf
59 and Fries, 2006).

60The study of brain connectivity using noninvasive electrophysiolog-
61ical measurements like EEG orMEG also presents some problemswhich
62still need to be faced. Most notably, the fact that the data are a largely
63unknownmixture of the activities of the actual brain sources constitutes
64a severe confounder. For instance, two sensors can record from the
65same neural populations, opening the possibility for spurious interac-
66tions between sensors in the absence of true brain interactions. Though
67the problem of mixing artifacts is well known (Nunez et al., 1997), it is
68increasingly acknowledged and studied not only for channel data (often
69referred to as volume conduction or field spread) (Srinivasan et al.,
702007; Winter et al., 2007) but also at the source level, i.e., after source
71activities have been estimated from channel data using an inverse calcu-
72lation (Schoffelen and Gross, 2009). Indeed, almost all the linear and
73nonlinearmethods used to analyzemultivariate data for neuroscientific
74applications (an excellent overview can be found in Pereda et al., 2005)
75are highly sensitive to mixing artifacts.
76To overcome the problem of volume conduction it was suggested to
77exploit the fact that the propagation of electromagnetic fields is much
78faster than neural communication: while phase shifts between electric
79scalp potentials (EEG) or neuromagnetic fields (MEG) and the underly-
80ing source activity are too small to be observable (Stinstra and Peters,
811998), the temporal resolution of the data is still sufficient to capture
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82 phase shifts of neuronal signal propagation. This observation has been
83 exploited in the imaginary part of coherency (ImCoh), a measure of
84 brain connectivity which cannot be caused by mixtures of independent
85 sources (Nolte et al., 2004). However, in the presence of interacting
86 sources, the actual value still depends on how sources are mapped
87 into sensors (Nolte et al., 2004) or on source space (Sekihara et al.,
88 2011). This drawback was addressed for two sources using pairwise
89 measures with the lagged phase coherence (Pascual-Marqui, 2007b;
90 Pascual-Marqui et al., 2011) or with the weighted phase lag index
91 (Vinck et al., 2011).
92 Nonlinear methods to estimate correlations between power
93 addressing the issue of artifacts of volume conduction have also been
94 recently suggested. In Brookes et al. (2012), the authors address the
95 problem of field spreadwhich generates spurious source space connec-
96 tivity results. Using a seed based approach, the linear projection of the
97 seed voxel is first regressed out from the signals at the test voxel and,
98 then, power correlations are assessed both within and across multiple
99 frequency bands. Similarly, in Hipp et al. (2012), sensor signals are
100 orthogonalized before computing power envelope correlations at the
101 same or different frequencies, thus removing signal components that
102 share the same phase.
103 A noteworthy approach to the problem of volume conduction is
104 proposed in Gómez-Herrero et al. (2008). Here, after an initial principal
105 component analysis (PCA), the authors propose to subtract a linear
106 multivariate autoregressive model from sensor data to suppress all
107 time-delayed correlations, with the idea that all neural interactions
108 require a minimum delay. An independent component analysis (ICA)
109 is then applied to the residuals and the ICA mixing matrix is used to
110 model the effects of volume conduction (see also Hyvärinen et al.,
111 2010). This approach takes note of the fact that a direct application
112 of ICA to the data would be a conceptual contradiction to the objec-
113 tive of the research, namely studying causality relationships between
114 sources.
115 In this paper, we address the problem of mixing artifacts in relation
116 to the use of nonlinear methods for studying cross-frequency phase-
117 synchronization between neuronal populations. Specifically we refer to
118 bispectral measures, which were developed and applied on EEG/MEG in
119 abundance (Darvas et al., 2009a, 2009b; Dumermuth et al., 1971;
120 Helbig et al., 2006; Jirsa and Müller, 2013; Schwilden, 2006; Wang et al.,
121 2007), and we examine the question of what information can be derived
122 from such measures that estimate true functional connectivity between
123 brain regions as opposed to mixing artifacts. Our new contribution is, es-
124 sentially, the generalization to nonlinear methods of the concepts based
125 on the imaginary part of coherency to solve the problem of volume
126 conduction (Marzetti et al., 2008; Nolte et al., 2004, 2008, 2009). As will
127 be shown below, for linear measures (e.g., cross-spectra), the imaginary
128 part equals the antisymmetric part (apart from a factor ι, i.e., the imagi-
129 nary unit) and the antisymmetry property is the more general principle
130 fromwhichmeasures robust to artifacts of volume conduction can be de-
131 rived for second-order (linear) and for third-order (nonlinear)moments.
132 In this way, antisymmetrized cross-bispectra can be used along with the
133 imaginary part of cross-spectra for identifying phase-locked brain areas
134 without being confounded by mixing artifacts, but with the important
135 difference that the former reflects the presence of brain rhythms locked
136 together at different frequencies, while the latter focuses on interactions
137 at the same frequency.Moreover, the proposed approach has also the ad-
138 vantage of improving, for a certain class of interactions, a limitation of the
139 imaginary part of the cross-spectrum, which cannot provide information
140 about relative phases, i.e. the phase difference of the activities of two
141 brain sources, in a way which is robust to artifacts of volume conduction.
142 Indeed, the imaginary part of the cross-spectrum is itself a real and not a
143 complex valued quantity, and real values do not contain information
144 about relative phases. Hence, the dilemma of linear measures is the fact
145 that possibly interesting quantities cannot be estimated in a way which
146 is robust to artifacts of volume conduction. On the contrary, the antisym-
147 metric part of third ordermoments (cross-bispectra) is itself complex and

148hence contains phase informationwhich is not corrupted by noninteract-
149ing sources.
150The paper is organized as follows. In the Material and methods sec-
151tion, we present the theory for cross-bispectral measures robust to
152mixing artifacts. Specifically, we first recall the basic principles of the
153imaginary part of cross-spectrum and, then, we introduce the antisym-
154metric part of the cross-bispectrum, discussing its properties with
155regards tomixing artifacts.Wedescribe a strategy to project the interac-
156tion from channel to source level by using a fit-based procedure. We
157also discuss some examples of interpretation of the phase of cross-
158bispectral measures. In the Result section, we first analyze the perfor-
159mance of our method in a simulation study, where we apply it on sim-
160ulated EEG data. We then describe an example of an application of the
161method to real EEG data. Finally, the Discussion section provides
162remarks on the method features and on its ability to give an insight on
163cross-frequency functional connectivity.

164Material and methods

165Theory for cross-bispectral measures robust to mixing artifacts

166Cross-spectra and mixing artifacts
167We first recall some principles of second order statistical analysis in
168the frequency domain. The respective statistical moments, the elements
169of the cross-spectral matrix S, are defined as

Sij fð Þ ¼ Xi fð ÞX�
j fð Þ

D E
ð1Þ

170171where Xi(f) and Xj(f) are the Fourier coefficients of (eventually win-
172dowed) segments of data in channel i and channel j at frequency f, * de-
173notes complex conjugation, and 〈 ⋅ 〉 denotes taking the expectation
174value, i.e. taking the hypothetical average over an infinite number of
175segments. Of course, the expectation value is unknown and will in gen-
176eral be estimated by a finite average over segments. Since S = S†, where
177(∙)† denotes transpose and complex conjugation, S is an hermitian ma-
178trix. Complex coherency, C, is defined as the cross-spectrum normalized
179by power, i.e. the diagonal elements of it:

Cij fð Þ ¼ Sij fð Þ
Sii fð ÞSjj fð Þ
� �1=2

:
ð2Þ

180181
182It was argued that the imaginary part of the coherency is a useful
183quantity to study brain interaction because it cannot be generated
184from a superposition of independent sources (Nolte et al., 2004). For
185later use we rederive this result assuming that the data have zero
186mean which, if not vanishing, has to be subtracted from the raw data.
187We now assume that all sources sk(f) are mapped instantaneously into
188channels as

Xi fð Þ ¼
X
k

aiksk fð Þ ð3Þ

189190with aik being real valued coefficients corresponding to the forward
191mapping of the kth source to the ith channel. Then the cross-spectrum
192can be written as

Sij fð Þ ¼
X
k

aikajk〈 sk fð Þj j2i þ
X
k≠k′

aikajk′ sk fð Þs�k′ fð Þ� �
: ð4Þ

193194
195If we now assume that all sources are independent, the second term
196on the right hand side in the above equation vanishes because for k ≠ k′

sk fð Þs�k′ fð Þ� � ¼ sk fð Þh i s�k′ fð Þ� � ¼ 0: ð5Þ
197198
199Since the first term in Eq. (4) is real valued, a non-vanishing imagi-
200nary part of S must arise from interacting sources and can be used to
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