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The topic of functional connectivity in neuroimaging is expanding rapidly and many studies now focus on cou-
pling between spatially separate brain regions. These studies show that a relatively small number of large scale
networks exist within the brain, and that healthy function of these networks is disrupted in many clinical popu-
lations. To date, the vastmajority of studies probing connectivity employ techniques that compute time averaged
correlation over severalminutes, and between specific pre-defined brain locations. However, increasing evidence
suggests that functional connectivity is non-stationary in time. Further, electrophysiologicalmeasurements show
that connectivity is dependent on the frequency band of neural oscillations. It is also conceivable that networks
exhibit a degree of spatial inhomogeneity, i.e. the large scale networks that we observemay result from the time
average of multiple transiently synchronised sub-networks, each with their own spatial signature. This means
that the next generation of neuroimaging tools to compute functional connectivitymust account for spatial inho-
mogeneity, spectral non-uniformity and temporal non-stationarity. Here, we present a means to achieve this via
application of windowed canonical correlation analysis (CCA) to source space projected MEG data. We describe
the generation of time–frequency connectivity plots, showing the temporal and spectral distribution of coupling
between brain regions. Moreover, CCA over voxels provides a means to assess spatial non-uniformity within
short time–frequency windows. The feasibility of this technique is demonstrated in simulation and in a resting
state MEG experiment where we elucidate multiple distinct spatio-temporal-spectral modes of covariation be-
tween the left and right sensorimotor areas.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Traditional analysis of neuroimaging data has focussed on the iden-
tification of significant changes in some metric of interest that are time
locked to a particular task. Such methodologies usually rely on knowl-
edge of task timing, and in some cases accurate models of the temporal
evolution of neuroimaging signals which are then compared to mea-
sured data. These techniques have proved effective in highlighting
brain regions that are involved in sensory and cognitive tasks. However,
the last decade has seen a ‘paradigm shift’ in functional brain imaging
(Raichle, 2009), with traditional analyses increasingly complemented
by analysis of functional connectivity (Beckmann et al., 2005; Biswal
et al., 1995; Deco and Corbetta, 2011; Fox and Raichle, 2007; Fox et al.,

2005). Here, researchers seek to elucidate spatial patterns of temporal
covariation between brain regions. Significant statistical interdepen-
dency (e.g. assessed via temporal correlation (Biswal et al., 1995) or in-
dependent component analysis (Beckmann et al., 2005)) between
signals originating in two or more spatially separate anatomical regions
is usually taken to mean that those regions are ‘connected’. Functional
magnetic resonance imaging (fMRI) has become themost popular tech-
nique formapping these networks of connectivity and this has led to the
exciting discovery of a relatively small number of large scale distributed
brain networks (Beckmann et al., 2005). These networks appear to be
heterogeneous in function (Deco and Corbetta, 2011), with some asso-
ciated with sensory control (e.g. the sensorimotor network) and others
relating to cognition and attention (e.g. the dorsal attention network).
Networks have been shown to be highly reproducible across subjects,
and observable both in the presence and absence of a task (Smith
et al., 2009).

In many studies, the methods used to probe connectivity between
regions assess temporal correlation over the duration of the measure-
ment, typically several minutes. This approach necessarily assumes
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that functional connectivity is stationary in time, over the duration of
the experiment, and can be captured entirely by a single value of time
averaged correlation. However, over a decade of theoretical (e.g.
Friston, 1997, 2000), computational (e.g. Breakspear et al., 2003; Deco
et al., 2009; Ghosh et al., 2008; Honey et al., 2007) and empirical (e.g.
Bassett et al., 2006; Breakspear et al., 2004) evidence suggests that com-
plex and highly temporally variable neuronal dynamics underlie the
coupling observed between spatially separate brain regions. Recent
studies have explored the temporal evolution of correlation between re-
gions using neuroimaging data. For example, Chang and Glover (2010)
employed fMRI to show that functional connectivity is highly variable
over time. Further, usingmagnetoencephalography (MEG), De Pasquale
and colleagues have publishedmultiple papers (de Pasquale et al., 2010,
2012) showing that accounting for temporal non-stationarity aids in the
detection of several resting state networks, suggesting that networks
transiently engage with other networks during periods of high internal
correlation, with the default mode network acting as a hub of cross net-
work interaction. Also usingMEG, Baker et al. (2012) showevidence of a
bi-state nature to band limited power correlation, with periods of zero
functional connectivity interspersed with periods of high transient
functional connectivity. These findings imply that assessing temporal
variability in functional connectivity may provide valuable insight into
the neurophysiology of functional networks.

In addition to non-stationarity in time, functional connectivity (as
measured by electrophysiological techniques) has also been shown to
vary across frequency bands. For example, band limited amplitude en-
velope correlation between the left and the right motor cortices is
maximised in the alpha and beta bands, with correlation failing to
reach significance at low frequency (i.e. 1–8 Hz) or high frequency
(i.e. N40 Hz) (Brookes et al., 2012b). Indeed this finding has been mir-
rored by other MEG studies (Hipp et al., 2012), and is in general agree-
ment with findings from simultaneous electroencephalography (EEG)/
fMRI. The origins of the instability of functional connectivity across fre-
quency bands is shown, to a degree, in a recent paper (Brookes et al.,
2012a)whichmeasured the time–frequency evolution of neural oscilla-
tory amplitude in four nodes of a fronto-parietal network during a cog-
nitive task. Results highlighted that in all four nodes, beta power
exhibited a monotonic reduction with increased task difficulty. Howev-
er, stimulus related increases in theta power within this network were
only observable in the frontal regions whilst stimulus related decreases
in alpha power were only observable in the parietal nodes. In other
words, network connectivity, as determined by electrophysiological
techniques, is not only non-stationary in time, but also specific to rela-
tively narrow frequency ranges.

Most studies assess functional connectivity either between two spa-
tially separate point locations (i.e. between two voxels), or between two
voxel clusters, with signals averaged across voxelswithin those clusters.
Thismeans that, in the sameway that time averaged functional connec-
tivity metrics cannot account for temporal non-stationarity, they also
cannot account for spatial inhomogeneity. Taking, for example, the
sensori-motor network, it is well known that separate sub-regions
within the sensorimotor network are mapped somatotopically (i.e.
mapped to separate areas of the body (Sanchez-Panchuelo et al.,
2012)). Functional connections may be investigated between any pair
of sub-regions within the sensori-motor network, and it is entirely con-
ceivable that temporal non-stationarity between individual voxels, or
small clusters, may be (in part) due to spatial inhomogeneity within
the network. For example, the two somatotopic regions mapped to
the left and right index fingers may exhibit a functional connection in
time window A, and likewise the two regions related to the left and
right ring fingers may exhibit a functional connection in time window
B. Assessment of connectivity between single voxels may therefore
only characterise one temporal aspect of connectivity whilst averaging
across voxels in large clusterswill necessarily spatially blur these effects,
as well as introducing increased noise by averaging voxels that do not
exhibit correlation.

The above arguments suggest that the next generation of neuroim-
aging tools to investigate functional connectivity will require the ability
to assess temporal non-stationarity, as well as spectral structure and
spatial inhomogeneities within (and across) the observed networks.
With this in mind, it is noteworthy that electrophysiological metrics
such as MEG have significant advantages over fMRI: increased time res-
olution offers advantages in characterising temporal non-stationarity
whilst the direct nature of MEG allows a non-invasive window on neu-
ral oscillations, and therefore spectral structure. In this paper, we intro-
duce a novel technique to characterise functional connectivity, based
upon beamforming (Brookes et al., 2008; Gross et al., 2001; Robinson
and Vrba, 1998; Sekihara et al., 2006; Van Veen et al., 1997) and canon-
ical correlation analysis (CCA) (Barnes et al., 2011; Brookes et al., 2012b;
Soto et al., 2010). We extend work presented in our previous papers
(Brookes et al., 2011a, 2012b; Hall et al., 2013) by developing a method
capable of measuring the temporal, spectral and spatial variation in
functional connectivity, assessed by band limited envelope correlation.
Specifically, we use a slidingwindow tomap temporal non stationarity;
temporal filtering to detect frequency specific functional connectivity
and, most importantly, we apply the multivariate CCA approach across
voxels, to characterise the spatial representation of functional connec-
tivity without the need for single seed voxel assessment or cluster aver-
aging. In what follows, the Theory section presents the theoretical basis
of CCA within a beamformer framework. In the Simulations section we
show how CCA can achieve the aims set out above. The Real MEG data
section shows application of CCA to real MEG data, examining resting
state sensorimotor network connectivity. Finally results are discussed
and conclusions drawn in the last section.

Theory

Electrophysiological signals are rich in information and the term
‘functional connectivity’, loosely defined as a statistical dependency be-
tween signals originating fromdifferent brain regions, canmean a num-
ber of things (see e.g. Schölvinck et al., 2013). Throughout the
remainder of this manuscript, we use the term functional connectivity
to mean temporal correlation between the amplitude envelopes of
band limited neural oscillations (Brookes et al., 2011a,b; de Pasquale
et al., 2010; Hall et al., 2013; Hipp et al., 2012; Liu et al., 2010;
Luckhoo et al., 2012).

Source localisation and selection of voxel clusters

Characterisation of functional connectivity between two voxel clus-
ters using MEG data necessarily requires that electrophysiological sig-
nals are assessed in source space (i.e. extra-cranial magnetic field data
are projected into the brain). There are several advantages of source
space projection in connectivity assessment (Schoffelen and Gross,
2009). Firstly, results can be overlaid directly onto structural brain
images, enabling direct interpretation with respect to underlying anat-
omy. Secondly, source localisation (via adaptive techniques such as
beamforming) Reduces artifacts in MEG data (Sekihara et al., 2001,
2006), meaning that the signal to noise ratio (SNR) of projected data
is higher than the SNR of raw data in channel space. This second point
is often overlooked, but of critical importance in this context since
artefacts caused by common interference across MEG channels (from
e.g. the heart) may generate spurious connectivity measurements
(Brookes et al., 2011a).

Here, source space projection is achieved via beamforming (Brookes
et al., 2008; Gross et al., 2001; Robinson and Vrba, 1998; Sekihara et al.,
2001; VanDrongelen et al., 1996; VanVeen et al., 1997); a popularmeth-
odology that has been well characterised in previous papers. Briefly,
using a beamformer, an estimate of electrical source strength is made
at some predetermined location in the brain, using a weighted sum of
MEG sensor measurements. The weighting parameters are derived
based on power minimisation; the overall power in the output signal is
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