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The organization of the human cerebral cortex has recently been explored using techniques for parcellating the
cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical ana-
tomic connections suggests the need to consider the possibility of regions belonging to multiple networks and
hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial indepen-

ﬁfty‘n/; :irgi::onnectivity dent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that corti-
MRI cal regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics

Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP).
The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the
more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function
as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis.
Many association regions belong to at least two networks, while somatomotor and early visual cortices are espe-
cially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and
posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the
default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homo-
logue participate in multiple hierarchically organized networks. These observations were replicated in both
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datasets and could be detected (and replicated) in individual subjects from the HCP.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Distributed neocortical brain areas form large-scale networks that
exhibit complex patterns of divergent and convergent connectivity
(e.g., Felleman and Van Essen, 1991; Goldman-Rakic, 1988; Jones and
Powell, 1970; Mesulam, 1981; Pandya and Kuypers, 1969; Ungerleider
and Desimone, 1986). A major challenge in systems neuroscience is to
make sense of these connectivity patterns to infer functional organiza-
tion. In the visual system, connectivity patterns suggest a separation of
processing into largely parallel, but interacting, hierarchical pathways
(Felleman and Van Essen, 1991; Ungerleider and Desimone, 1986). In
contrast, the association cortex comprises networks of widely distribut-
ed and densely interconnected areas without rigid hierarchical organi-
zation (Goldman-Rakic, 1988; Selemon and Goldman-Rakic, 1988; but
see Badre and D'Esposito, 2009).

Resting-state functional connectivity MRI (rs-fcMRI) provides a pow-
erful, albeit indirect, approach to make inferences about human cortical
organization (Biswal et al., 1995). Despite its limitations (Buckner et al.,
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2013), we and others have used functional connectivity to estimate cor-
tical network patterns (e.g., Bellec et al., 2010; Damoiseaux et al., 2006;
He et al,, 2009; Margulies et al., 2007; Power et al., 2011; Smith et al.,
2009; van den Heuvel et al., 2009; Yeo et al., 2011).

The majority of functional connectivity studies have focused on dis-
sociating functionally distinct networks or modules (Beckmann et al.,
2005; Calhoun et al,, 2008; Craddock et al., 2012; Damoiseaux et al.,
2006; De Luca et al., 2006; Dosenbach et al., 2007; Doucet et al.,, 2011;
Fox et al,, 2006; Greicius et al., 2003; Margulies et al., 2007; Rubinov
and Sporns, 2011; Salvador et al., 2005; Seeley et al, 2007; Smith
et al., 2009; van den Heuvel et al., 2009; Varoquaux et al., 2011).
Fewer studies have examined the relationships among different func-
tional networks (Sepulcre et al., 2012a; Sporns, 2013). For example,
Fox et al. (2005) and Fransson (2005) have investigated the antagonis-
tic relationship between the default and task-positive networks. Others
(Doucet et al., 2011; Lee et al., 2012; Meunier et al., 2009) have investi-
gated the (spatial) hierarchical relationship across functional networks.

We previously employed a mixture model that relied on a winner-
takes-all assumption to map network topography in the human cerebral
cortex (Yeo et al., 2011). Each brain region was assigned to a single, best-
fit network allowing us to derive connectivity maps that emphasize the


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2013.10.046&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2013.10.046
http://dx.doi.org/10.1016/j.neuroimage.2013.10.046
http://www.sciencedirect.com/science/journal/10538119

B.T.T. Yeo et al. / Neurolmage 88 (2014) 212-227 213

interdigitation of parallel, distributed association networks. The key fea-
tures of this parallel organization are that (1) each association network
consists of strongly coupled brain regions spanning frontal, parietal, tem-
poral, and cingulate cortices, and (2) the components of multiple net-
works are spatially adjacent (Yeo et al., 2011; also see Vincent et al.,
2008; Power et al,, 2011).

However, it is unlikely that the brain is simply parcellated into a dis-
crete number of nonoverlapping networks (Mesulam, 1998). Interac-
tions across networks, as well as the existence of ‘convergence zones’
of regions that participate in multiple networks, are likely important
features of brain organization (Beckmann et al,, 2005; Bullmore and
Sporns, 2009; Fornito et al,, 2012; Jones and Powell, 1970; Mesulam,
1998; Pandya and Kuypers, 1969; Power et al,, 2013; Sepulcre et al.,
2012b; Spreng et al., 2010). Relevant to this point, we have observed
variability in the goodness of fit of certain regions to their winner-
takes-all network (Figs. 8 and 10 of Yeo et al,, 2011), consistent with
the notion that certain brain regions might participate in multiple net-
works (Andrews-Hanna et al., 2010; Beckmann et al, 2005; Leech
et al., 2011; Rubinov and Sporns, 2011; Sporns et al., 2007).

Here, we address the possibility of multiple network membership by
applying latent Dirichlet allocation (LDA; Blei et al., 2003) and spatial In-
dependent Component Analysis (ICA; Calhoun et al., 2001; Beckmann
and Smith, 2004) to examine the topography of overlapping networks.
This is an important consideration because network topography may
change substantially from our original estimates (Yeo et al., 2011) if
constraints are relaxed to permit overlapping networks. Conversely, un-
biased estimation of network topography may broadly confirm previous
estimates and allow us to investigate the interactions and overlaps
among networks.

Materials and methods
Overview

We applied the LDA model to resting-state data from 1000 healthy
young adults from the Brain Genomics Superstruct Project (GSP), as
well as to 12 high quality, high-resolution individual subject datasets
from the Human Connectome Project (HCP; Van Essen et al., 2013).
The large sample size in GSP and the multiple sessions of individual
HCP subjects permitted us to quantify patterns of cortico-cortical cou-
pling that reveal insights into interactions within and across functional
networks. Analyses proceeded in four stages. First, we applied the mix-
ture model (Yeo et al., 2011) and LDA model (Blei et al., 2003) to both
the GSP and HCP group datasets, in order to examine how cortical net-
work organization changes as regions are permitted to participate in
multiple networks (Fig. 1). For this analysis, the GSP and HCP datasets
were used to provide independent replication samples. Next, we further
analyzed several cortical regions participating in multiple sub-networks
(Figs. 2 to 4). We then exploited the high quality, multi-session HCP
data to determine if network organization can be estimated and repli-
cated in individual subjects (Figs. 5 and 6). This increased the confi-
dence that the discovered network organization was not merely a
consequence of averaging across subjects. Additional control analyses
confirmed similar network organization regardless of whether global
signal regression was performed during preprocessing (Supplemental
Fig. 7) and across degenerate (i.e., not highest likelihood) network esti-
mates (Figs. 7 and 8).

Datasets

The GSP subjects were between ages 18-35 (mean age = 21.3;
42.7% male). Participants underwent one or two runs of eyes open
rest (EOR). Analyses of the GSP data have been published previously
(e.g., Buckner et al., 2011; Choi et al.,, 2012; Yeo et al,, 2011). The HCP
subjects were between ages 26-35 (mean age estimate = 30.9; 16.7%
male). HCP provides aggregated data concerning age, hence mean age

can only be estimated. HCP participants underwent two runs of passive
fixation (FIX) in each of two separate sessions, for a total of four runs
(~24 h interval between sessions).

GSP MRI data acquisition and preprocessing

Data were acquired on 3 T Tim Trio scanners (Siemens, Erlangen,
Germany) using a 12-channel phased-array head coil. Functional data
consisted of gradient-echo echo-planar images (EPI) sensitive to blood
oxygenation level-dependent (BOLD) contrast. Parameters for the rest-
ing data were: repetition time (TR) = 3000 ms, echo time (TE) =
30 ms, flip angle (FA) = 85° 3 x 3 x 3 mm voxels, field of view
(FOV) = 216, and 47 axial slices collected with interleaved acquisition.
Slices were oriented along the anterior commissure—posterior commis-
sure plane. Functional runs lasted 6.2 min (124 time points). Structural
data included a multiecho T1-weighted magnetization-prepared
gradient-echo (MP-RAGE) image (van der Kouwe et al., 2008).

fMRI processing steps included 1) discarding the first four frames of
each run, 2) correcting for slice acquisition-dependent time shifts in
each volume with SPM2 (Wellcome Department of Cognitive Neurolo-
gy, London, UK), and 3) correcting for head motion using rigid body
translation and rotation parameters (FSL; Jenkinson et al., 2002; Smith
et al., 2004). This was followed by standard functional connectivity pre-
processing (Fox et al., 2005; Van Dijk et al.,, 2010; Vincent et al., 2006).
Linear trends over each run were removed and a low-pass temporal fil-
ter retained frequencies below 0.08 Hz. Spurious variance was removed
using linear regression with terms for head motion, whole brain signal,
ventricle signal, white matter signal and their derivatives.

Individual participants' T1 scans were reconstructed into surface rep-
resentations using FreeSurfer (http://surfer.nmr.mgh.harvard.edu; Fischl,
2012). Functional data were registered to structural images using
FreeSurfer's FsFast package (Greve and Fischl, 2009; http://surfer.nmr.
mgh.harvard.edu/fswiki/FsFast). The structural preprocessing and struc-
tural-functional data alignment steps were described in Yeo et al.
(2011). Functional data were projected onto the FreeSurfer surface
space (2 mm mesh), smoothed on the surface using a 6 mm full-width
half-maximum kernel, and were then downsampled to a 4 mm mesh.

HCP MRI data acquisition and preprocessing

HCP data were part of the HCP initial October 2012 public data release
(http://www.humanconnectome.org/data). Data were acquiredona3 T
Skyra scanner (Siemens, Erlangen, Germany) using a standard 32-
channel head coil. The scanner has a customized SC72 gradient insert
and a customized body transmitter coil with 56 cm bore size. The HCP
Skyra has the standard set of Siemens shim coils (up to 2nd order). Func-
tional data consisted of gradient-echo EPI sensitive to BOLD contrast.
Parameters for the resting data were: TR = 720 ms, TE = 33.1 ms,
FA = 52°, 2x2x2mm voxels, FOV = 208 x 180 mm, and 72
oblique axial slices alternated between phase encoding in a right to left
direction in one run and phase encoding in a left to right direction in
the other run (Feinberg et al., 2010; Moeller et al., 2010; Setsompop
et al, 2012; Xu et al,, 2012). Each functional run lasted 14.55 min (1200
time points). Structural data included a T1-weighted MP-RAGE image. Pa-
rameters for the structural scan were as follows: TR = 2400 ms,
TI = 1000 ms, TE = 2.14 ms, FA = 8°, 0.7 x 0.7 x 0.7 mm voxels and
FOV = 224 x 224 mm. More details of the acquisition strategy can be
found in Van Essen et al. (2012).

We utilized the fMRI preprocessed data released by the HCP (Glasser
et al,, 2013). fMRI processing steps included 1) gradient distortion cor-
rection (Jovicich et al., 2006, 2) motion correction, 3) distortion correc-
tion, 4) registration to the T1 scan (Greve and Fischl, 2009), 5) spline
resampling to FSL MNI152 2 mm space using FSL ENIRT (Jenkinson
et al., 2002; Smith et al., 2004), and 6) intensity normalization to mean
of 10,000 and bias field correction. This was followed by standard func-
tional connectivity preprocessing as in the GSP dataset. The preprocessed
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