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Cognitive dysfunction in Multiple Sclerosis (MS) is closely related to altered functional brain network topology.
Conventional network analyses to compare groups are hampered by differences in network size, density and
suffer from normalization problems. We therefore computed the Minimum Spanning Tree (MST), a sub-graph
of the original network, to counter these problems. We hypothesize that functional network changes
analysed with MSTs are important for understanding cognitive changes in MS and that changes in MST
topology also represent changes in the critical backbone of the original brain networks. Here, resting-
state magnetoencephalography (MEG) recordings from 21 early MS patients and 17 age-, gender-, and
education-matched controls were projected onto atlas-based regions-of-interest (ROIs) using beamforming.
The phase lag index was applied to compute functional connectivity between regions, from which a
graph and subsequently the MST was constructed. Results showed lower global integration in the alpha2
(10-13 Hz) and beta (13-30 Hz) bands in MS patients, whereas higher global integration was found in
the theta band. Changes were most pronounced in the alpha2 band where a loss of hierarchical structure
was observed, which was associated with poorer cognitive performance. Finally, the MST in MS patients
as well as in healthy controls may represent the critical backbone of the original network. Together, these
findings indicate that MST network analyses are able to detect network changes in MS patients, which
may correspond to changes in the core of functional brain networks. Moreover, these changes, such as a
loss of hierarchical structure, are related to cognitive performance in MS.
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Introduction the network (Bullmore and Sporns, 2012; Stam and van Straaten,

2012). Therefore, analysing network topology in MS in relation to

Multiple Sclerosis (MS) is an inflammatory demyelinating and
neurodegenerative disease leading to both physical disability and
cognitive dysfunction. It is still not fully elucidated how cognitive
dysfunction and physical disability result from demyelination and
neurodegeneration, given the large clinical and radiological variability
of the disease. The brain is a complex network and it is widely claimed
that normal cognitive function as well as cognitive dysfunction in
neurological diseases cannot be fully understood without proper
knowledge of the brain's topology, i.e. the spatial organisation of
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cognitive dysfunction and physical disability is highly relevant.

Graph theory provides a comprehensive and sophisticated frame-
work to characterize network topology. By applying graph theory we
have gained insight in how brain networks can display features of
both integration and segregation of information processing, and how
networks are organized to minimize economical costs and maximize
efficiency (Bullmore and Sporns, 2012; Rubinov and Sporns, 2010;
Stam and van Straaten, 2012; van Straaten and Stam, 2013). An optimal
topology with local clustering and strategic long distance connections
(i.e. short path length) has been called a small-world network (Watts
and Strogatz, 1998). Moreover, brain networks are characterised by
the presence of highly important nodes that lie central in the network's
flow of information, i.e. hubs (Bullmore and Sporns, 2012).

Graph theoretical analyses applied to structural and functional
networks in Relapsing Remitting MS (RRMS) are scarce (Hardmeier
et al,, 2012; Schoonheim et al,, 2011, 2012a; Shu et al., 2011). Previous
MEG studies revealed that functional networks in early RRMS patients
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display a more regular network, i.e. higher clustering and longer path
length (Schoonheim et al., 2011) and, more specifically, temporal regions
appear to lose “hubness”, while parietal regions appear to become more
hub-like in early RRMS patients (Hardmeier et al,, 2012). Analyses in
these MEG studies were performed at the sensor-level. This is difficult
to interpret and may suffer from problems with functional connectivity
estimation due to field spread and volume conduction. For this
reason, more recent network studies have been based on analysis in
source-space (Hipp et al,, 2012; Palva et al,, 2010), in particular using
beamforming techniques (van Dellen et al., 2013; Douw et al., 2013;
Hillebrand et al.,, 2012; Ponsen et al.,, 2013).

Although conventional graph theoretical analyses are helpful for
understanding disease mechanisms (Bullmore and Sporns, 2012), they
suffer from methodological difficulties when comparing different groups
or conditions (Fornito et al., 2013; van Wijk et al., 2010). For instance,
graph measures are influenced by the size of the network (i.e. the
number of nodes), network sparsity (percentage links present) and the
average degree (i.e. the number of connections per node). An often
applied approach to correct for size or average degree dependence is to
normalize graph metrics by random graphs. Even this normalization
does not solve the dependence of size, degree and density effects and
may even exuberate it. Fixing the number of nodes and average degree
in the network does eliminate size effects but may introduce spurious
connections or ignore strong connections in the network (van Wijk
et al,, 2010). Even the use of weighted graphs instead of un-weighted
graphs does not provide an optimal solution since measures computed
on these graphs are influenced by (the large number of) noisy
connections and by the average functional connectivity strength.

An alternative approach is to construct and compare the minimum
spanning tree (MST) of the original weighted graphs (Jackson and Read,
2010a,b; Wang et al., 2008). A spanning tree is a sub-graph of the original
graph that does not contain circles or loops and connects all nodes in the
original graph. The MST is a tree which has the minimum total weight of
all possible spanning trees of the original graph (Van Mieghem and
Magdalena, 2005). If the original graph contains N nodes then the MST
always has N nodes and M = N — 1 links, therefore enabling direct
comparison of MSTs between groups and avoiding aforementioned
methodological difficulties such as setting arbitrary thresholds.
Furthermore, if the original network can be interpreted as a kind of
transport network, and if edge weights in the original graph possess
strong fluctuations, also called the strong disorder limit, all transport
in the original graph flows over the MST (Van Mieghem and van
Langen, 2005). If the strong disorder limit condition holds, then the
union of all shortest paths coincides with the MST and the MST
forms the critical backbone of the original graph (Van Mieghem
and Magdalena, 2005; Wang et al., 2008).

Network analyses of functional brain networks after constructing
MSTs in neurological diseases are limited (Alexander-Bloch et al., 2010;
Lee et al., 2006; Schoen et al., 2011). In epilepsy, MST network analyses
allowed identification of critical nodes in a temporal network associated
with seizures (Ortega et al, 2008) and characterization of different
network topologies in different epilepsy types (Lee et al, 2006). In
addition, default mode network changes in Alzheimer's disease were
captured by constructing MSTs based on part of the original graph
(Ciftci, 2011). A recent study on functional network changes during
brain maturation in children revealed that MST network analyses were
sensitive for detecting changes in network topology and were related
to conventional graph theoretical outcome measures on the same data
(Boersma et al., 2012).

The aim of our study was three-fold. Firstly, the main question was
to investigate if we could detect functional network changes in MSTs
of early RRMS patients. Secondly, to what extent these changes were
associated with cognitive dysfunction. Thirdly, if these changes in MST
topology between MS patients and healthy controls were present,
could these correspond to changes in the critical backbone of functional
brain networks in RRMS?

Methods
General study design

In this cross-sectional study, MS patients and healthy controls
underwent MEG, MRI, neuropsychological assessment and neurological
examination on the same day. As outcome measures we used MST
metrics, cognition and neurological status. An overview of the applied
methods is given in Fig. 1.

Participants

Subjects from a previous study were included (Meer et al., 2013;
Tewarie et al, 2013): 21 MS patients (mean age 41.9 4 7.7, disease
duration 6.8 4 0.9 years) and 17 controls (mean age 39.8 + 9.8) and
were gender-, education- and age-matched. All patients were diagnosed
with clinically-definite Multiple Sclerosis (Polman et al., 2005), specifi-
cally RRMS (Lublin and Reingold, 1996). Patients were recruited from
the VU University Medical Center. All patients were part of the six-year
follow-up of an early inception cohort, in which patients were included
at diagnosis and subsequently followed annually (Schoonheim et al,
2012Db). Physical disability was measured using the Expanded Disability
Status Scale (EDSS) (Kurtzke, 1983) and found to be relatively mild
(median 2, range 0-4.5). The study was approved by the institutional
ethics review board of the VUmc and all subjects gave written informed
consent prior to participation. All subjects underwent a set of neuro-
psychological tests as described earlier (Schoonheim et al, 2011;
Tewarie et al., 2013). In summary, the brief repeatable battery for
neurological disease (BRB-N), consisting of the selective reminding test
(SRT), the 10/36 spatial recall test (SPART), the symbol digit modalities
test (SDMT), the word list generation test (WLG), the concept shifting
test (CST), the stroop colour word test and the memory comparison
test (MCT) were administered. An overall cognitive Z-score was
calculated and used in further analyses.

Magnetic Resonance Imaging

An MRI scan was obtained from all subjects, using a 3 T-MRI system
(GE Signa HDXT V15m). A 2D dual-echo T2-weighted sequence (TR
9680 ms, TE 22/112 ms) and T1-weighted sequence (TR 475 ms, TE
9 ms) were obtained with 48 slices of 3 mm and 3D-T1 heavily T1-
weighted sequence (FSPGR, TR 7.8 ms, TE 3.0 ms, TI 450 ms) with
1 mm, slices covering the entire brain. All scans were inspected by an
experienced rater (MMS). Subsequently, lesion volumes were quantified.
All lesion volumetric analyses were performed using Alice (Perceptive
informatics Inc.) applying a local thresholding technique. Total gray
matter (NGMV), total white matter (NWMV), and whole brain volumes
(NBV), corrected for head size, were measured using the FSPGR images
and SIENAX (Smith et al., 2002) version 2.5 (part of FSL 4.1, FMRIB's
Software Library, http://www.fmrib.ox.ac.uk/fsl).

Magnetoencephalography

As described previously (Meer et al., 2013; Tewarie et al., 2013),
MEG data were recorded using a 151-channel whole-head MEG system
(CTF systems; Port Coquitlam, BC, Canada) while participants were in a
supine position in a magnetically shielded room (Vacuumschmelze,
Hanau, Germany). A third-order software gradient (Vrba et al., 1999)
was used with a recording passband of 0-150 Hz and a sample
frequency of 625 Hz. Participants had to be free of any metal objects.
Magnetic fields were recorded during a no-task, eyes-open condition
for three minutes and eyes-closed condition for five consecutive
minutes. At the beginning and end of each recording, the head position
relative to the coordinate system of the helmet was determined by
leading small alternating currents through three head position coils
attached to the left and right preauricular points and the nasion.
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