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Accurate estimation of location and extent of neuronal sources from EEG/MEG remain challenging. In the present
study, a new source imaging method, i.e. variation and wavelet based sparse source imaging (VW-SSI), is pro-
posed to better estimate cortical source locations and extents. VW-SSI utilizes the L1-norm regularization meth-
odwith the enforcement of transform sparseness in both variation andwavelet domains. The performance of the
proposedmethod is assessed by both simulated and experimentalMEG data, obtained froma language task and a
motor task. Compared to L2-norm regularizations, VW-SSI demonstrates significantly improved capability in
reconstructing multiple extended cortical sources with less spatial blurredness and less localization error. With
the use of transform sparseness, VW-SSI overcomes the over-focused problem in classic SSI methods. With the
use of two transformations, VW-SSI further indicates significantly better performance in estimating MEG source
locations and extents than other SSI methods with single transformations. The present experimental results in-
dicate that VW-SSI can successfully estimate neural sources (and their spatial coverage) located in close areas
while responsible for different functions, i.e. temporal cortical sources for auditory and language processing,
and sources on the pre-bank and post-bank of the central sulcus. Meantime, all other methods investigated in
the present study fail to recover these phenomena. Precise estimation of cortical source locations and extents
from EEG/MEG is of significance for applications in neuroscience and neurology.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Electroencephalography (EEG) and magnetoencephalography
(MEG) are promising noninvasive neuroimaging technologies to probe
human brain activities with excellent temporal resolutions (millisec-
onds), as compared with other neuroimaging technologies, e.g. func-
tional magnetic resonance imaging (fMRI). Meantime, the precise
reconstruction of brain sources behind EEG/MEG still remains challeng-
ing, which are usually obtained by solving so-called EEG/MEG inverse
problems (Baillet et al., 2001). Accurate estimation of EEG/MEG source
locations and extents, however, is of significance in understanding
human brain functions (Dhond et al., 2001;Hillyard, 1993) and address-
ing clinical needs (Brodbeck et al., 2011). EEG/MEG inverse solutions
based on equivalent current dipole (ECD) source models provide local-
izations for single or a few focal brain activations (Stefan et al., 2003;
Wood, 1982),when the number of dipoles is known or can be estimated
(Wood, 1982). However, ECD solutions provide no estimation of source

extents since ECDs are only discrete source points, which can even po-
tentially cause bias in locating spatially extended brain sources (Ou
et al., 2009; Plummer et al., 2008).

Recognizing the limitation of ECD, distributed current density
(DCD) models have been developed to model extended brain
sources, in which the source space is defined as a set of distributed
dipoles over a three dimensional (3D) brain volume (Ding and He,
2008; Pascual-Marqui et al., 1994) or a two dimensional (2D) corti-
cal surface (cortical current density, i.e. CCD, models) (Dale and
Sereno, 1993). It is thus theoretically possible to infer both source lo-
cations and extents in inverse solutions. Practically, the estimation
accuracy still largely depends on how efficiently DCD-based inverse
problems can be solved, which have infinite number of solutions to a
given set of measurements (Baillet et al., 2001). Unique solutions are
typically obtained by introducing anatomical and/or functional
priors, via a procedure known as regularization (Vega-Hernández
et al., 2008). The most common regularization approach is to have
minimum overall energy (i.e. L2-norm) in inverse solutions, such
as minimum norm estimate (MNE) (Hämäläinen and Ilmoniemi,
1994) and its variants, i.e. weighted MNE (wMNE) (Dale and
Sereno, 1993) and low-resolution electromagnetic tomography
(LORETA) (Pascual-Marqui et al., 1994). L2-norm regularizations

NeuroImage 86 (2014) 280–293

⁎ Corresponding author at: University of Oklahoma, 110 W. Boyd St. DEH Room 150,
Norman, OK 73019, USA. Fax: +1 405 325 7066.

E-mail address: leiding@ou.edu (L. Ding).

1053-8119/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.neuroimage.2013.09.070

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://dx.doi.org/10.1016/j.neuroimage.2013.09.070
mailto:leiding@ou.edu
http://dx.doi.org/10.1016/j.neuroimage.2013.09.070
http://www.sciencedirect.com/science/journal/10538119


belong to quadratic regression problems (Hoerl and Kennard, 1970),
which assume Gaussian source fields (Uutela et al., 1999) and pro-
duce over-smooth estimations (Pascual-Marqui et al., 1994; Vega-
Hernández et al., 2008). The nature of smoothness makes them not
suitable for estimating source extents from early sensory brain re-
sponses and focal epilepsy, in which sources are proved to be com-
pact (Allison et al., 1989; Oishi et al., 2002).

Other regularizations utilizing non-quadratic regression schemes,
such as minimum current (i.e. L1-norm), have demonstrated sparse so-
lutions to address the smoothness problem (Ding and He, 2008;
Tibshirani, 1996; Uutela et al., 1999). However, most of them, including
selective minimum-norm method (Matsuura and Okabe, 1995), mini-
mum current estimate (MCE) (Uutela et al., 1999), least absolute
shrinkage selection operator (LASSO) (Tibshirani, 1996), and sparse
source imaging (SSI) (Ding and He, 2008), produce over-focused solu-
tions, which do not reflect accurate source extents either (Chang et al.,
2010; Ding et al., 2011). The over-focality is caused by insufficient con-
sideration of source extents inmodels due to the enforcement of sparse-
ness in the original source domain, which leads to the idea of enforcing
sparseness in transform domains (Chang et al., 2010; Ding, 2009),
where signals (i.e. current densities) can be sparser or more compress-
ible (Candès and Romberg, 2007). Variation transform,which computes
the difference between neighbored elements, has been first reported to
use transform sparseness (Ding, 2009). Inverse solutions of variation
based L1-norm regularizations allow the reconstruction of extended
sources, in which source extents can be inferred. Laplace transform
has also been proposed to compress current densities using the
second-order spatial derivative (Chang et al., 2010), which promotes
smoothness in neighborhoods. However, since the minimization of
both variation and second-order derivative does not limit the global en-
ergy of inverse solutions, L1-norm regularizations with these trans-
forms must incorporate additional priors to constrain global energies.
Wavelet transforms, efficient methods in compressing signals and/or
images, have been developed for complex 2D surfaces with either regu-
lar subdivisions, e.g. spherical wavelets (Schröder and Sweldens, 1995),
or irregular subdivisions, e.g. face-based wavelets (Liao et al., 2012;
Valette and Prost, 2004), which can be applied to compress current
densities on highly convoluted cortical surfaces, i.e. CCD models. The
L1-norm regularizations based on wavelet transforms have thus been
pursued (Chang et al., 2010; Liao et al., 2012). Liao et al. (2012) further in-
dicates that the L1-norm regularizations using face-based wavelets have
better accuracy in recovering sources than spherical wavelets (Chang
et al., 2010). Furthermore, adaptive estimation of source extents of both
focal and extended sources has been suggested possible by controlling
the level of wavelet compression (Chang et al., 2010), which is, however,
challenging without a priori knowledge about the size of sources.

In the present study, a new sparse source imaging method, i.e.
variation and wavelet based SSI (VW-SSI), is proposed using multiple
penalties in L1-norm regularization, i.e. enforcing sparseness in both
variation and wavelet domains (with the face-based wavelet). It aims
to address the limitation in the variation-based method since the
wavelet penalty term constrains the global energy, and to stabilize the
issue of selecting the wavelet compression level with the variation
penalty term. With the hybrid sparseness constraints integrated, it is
expected that SSI techniques can achieve better accuracy in estimating
source locations and extents even in data with low signal-to-noise
ratio (SNR). The performance of the proposed method was evaluated
in simulated and experimental MEG data. In simulations, neural activa-
tions of various extents were randomly located. The VW-SSI inverse so-
lutions were assessed using multiple metrics on the accuracy of both
locations and extents, as compared with other SSIs and L2-norm
methods. The sensitivities of VW-SSI to SNR, wavelet compression
level, and hyper-parameter for multiple penalty terms were studied.
Experimental MEG data collected from both language and motor tasks
in an epilepsy patient were analyzed to evaluate and compare all
methods in reconstructing distributed neural activations.

Material and methods

Sparse source imaging using L1-norm regularization

Giving the CCD sourcemodel and the conductive profile of the head,
the relationship between MEG measurements ϕ

*
and source s

*
can be

expressed as (Nunez, 1981):

ϕ
*¼ A s

* þ n
* ð1Þ

where n
*
denotes the noise and A is the lead field. Since the number of

measurements M is much smaller than the number of dipoles N, its in-
verse problem has no unique solution. L1-norm regularizations have
been proposed to search for a unique solution by enforcing sparseness
in either original source domain or transform domains (Chang et al.,
2010; Ding, 2009; Ding and He, 2008; Liao et al., 2012; Tibshirani,
1996; Uutela et al., 1999), which can be universally expressed as a
constrained optimization problem:

min H s
*
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−A s

*
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2
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where thematrixH is either an identitymatrix or anymatrix for a trans-
form. The regularization parameter ɛ is estimated by the discrepancy
principle (Morozov, 1966). Assuming Gaussian white noise with vari-
ance σ2, 1=σ2
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, can be treated as a χ2-

distribution with degree of freedom as the number of sensors. To
make the probability of ϕ

*
−A s

*
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2
≥ε small enough, ɛ is selected as

the upper bound of the confidence interval [0, ɛ] that integrates to
0.99 probabilities.

Using different transformmatrixH, various L1-norm regularizations
can be formed: (1) SSI (Ding and He, 2008) where H is the identity ma-
trix; (2) variation based SSI (V-SSI) (Ding, 2009) using the variation op-
erator V as H (Variation transform section); (3) wavelet based SSI (W-
SSI) (Liao et al., 2012) using the wavelet transform matrix Wm as H
(Face-based wavelet transform section), where the index m stands for
the level of wavelet compression (m=1,2,3,4).

Variation transform

In the CCD model meshed with triangles (see Simulation protocol
section for details), the variation transform is defined as (Ding, 2009):

V ¼
v11 v12 ⋯ v1N
v21 v22 ⋯ v2N
⋮ ⋮ ⋱ ⋮

vP1 vP2 ⋯ vPN

2
664

3
775 vij ¼ 1; vik ¼ −1; if elements j;k share the same edge i

vij ¼ 0; otherwise

�

ð3Þ

where P is the number of triangular edges. Each element in the variation
vector, V s

*
, is defined on each triangular edge indicating the change of

values over neighbored triangles.

Face-based wavelet transform

To define wavelet transform on the cortical surface, a multi-
resolution cortical model (Fig. 1) is firstly constructed by iteratively
compressing the highly convoluted cortical structure to create a series
of spaces for multi-resolution wavelet analysis (Valette and Prost,
2004). The compression procedure is accomplished by hierarchically
mergingmultiple triangles on a finer level into one triangle on a coarser
level.With themulti-resolution corticalmodel, the scaling function sup-
ported on a triangle at level m is designed as one on the triangle and
zeros otherwise. Then, its decompositions to approximations (scaling
coefficients) and details (wavelet coefficients) at the next coarse level
m+ 1 can be obtained by directly applying analysis matrices Am and
Bm (Liao et al., 2012). See details on how to construct Am and Bm in

281M. Zhu et al. / NeuroImage 86 (2014) 280–293



Download English Version:

https://daneshyari.com/en/article/6027782

Download Persian Version:

https://daneshyari.com/article/6027782

Daneshyari.com

https://daneshyari.com/en/article/6027782
https://daneshyari.com/article/6027782
https://daneshyari.com

