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Functional connectivity refers to covarying activity between spatially segregated brain regions and can be studied
bymeasuring correlation between functional magnetic resonance imaging (fMRI) time series. These correlations
can be caused either by direct communication via active axonal pathways or indirectly via the interaction with
other regions. It is not possible to discriminate between these two kinds of functional interaction simply by con-
sidering the covariance matrix. However, the non-diagonal elements of its inverse, the precision matrix, can be
naturally related to direct communication between brain areas and interpreted in terms of partial correlations.
In this paper, we propose a Bayesianmodel for functional connectivity analysis which allows estimation of a pos-
terior density over precisionmatrices, and, consequently, allows one to quantify the uncertainty about estimated
partial correlations. In order to makemodel estimation feasible it is assumed that the sparseness structure of the
precision matrices is given by an estimate of structural connectivity obtained using diffusion imaging data.
The model was tested on simulated data as well as resting-state fMRI data and compared with a graphical
lasso analysis. The presented approach provides a theoretically solid foundation for quantifying functional
connectivity in the presence of uncertainty.

© 2013 Elsevier Inc. All rights reserved.

Introduction

One of the oldest and most influential ideas in cognitive neurosci-
ence is that the brain, and in particular the cortex, can be divided into
specialized functional regions (Friston, 2011). In recent times, the neu-
roscience community has become increasingly interested in determin-
ing how these regions are organized as large functional networks and
how their modulation reflects ongoing cognitive processing (Bullmore
and Sporns, 2009). The organization of these functional networks can
be described using the umbrella term ‘functional connectivity’, defined
as the deviations from statistical independence between distributed
and often spatially remote neuronal units (Craddock et al., 2013;
Friston, 1994). Despite the indirect nature of the blood oxygenation
level dependent (BOLD) signal, functional magnetic resonance imaging
(fMRI) has proven to be able to extract patterns of co-activation be-
tween clusters of voxels (Lowe et al., 2000).

The easiestway to operationalize the notion of functional connectiv-
ity is to calculate a covariancematrixwhich, in case of standardized var-
iables, is equivalent to the correlation structure between brain regions.
However, this approach is not able to identify direct (monosynaptic)
functional connections as it is also sensitive to indirect (polysynaptic)
functional interactions. For example, if regions A and B as well as
regions B and C display correlated activity, then A and C will also

show correlated activity even if they are not directly connected
(Smith, 2012; Varoquaux and Craddock, 2013).

In contrast, the precisionmatrix, defined as the inverse of the covari-
ance matrix, captures conditional independence between brain regions
(Lauritzen, 1996; Whittaker, 2009). That is, elements of the precision
matrix are related to partial rather than full correlations and zero ele-
ments of the precisionmatrix imply an absence of direct functional con-
nectivity. Therefore, sparse precision matrices provide us with valuable
information about how different regions interact, though the estimates
need to be interpreted with care (Friston, 2011; Hutchison et al., 2013;
Marrelec and Benali, 2009; Woolrich and Stephan, 2013).

A common approach to obtain a point estimate for a sparse precision
matrix is by means of the graphical lasso (Friedman et al., 2008; Smith
et al., 2011; Varoquaux et al., 2010), which achieves sparseness through
‘1 regularization. Although the graphical lasso provides a reasonable
point estimate, it is biased due to the induced shrinkage of the partial
correlations. Furthermore, it does not directly provide a measure of un-
certainty regarding the partial correlation estimates. This could lead to
possibly erroneous conclusions about functional connectivity.

From a Bayesian perspective we are interested in the posterior den-
sity of the precision matrix given observed data. Ultimately, this should
lead to more reliable inferences about a subject's cognitive state. In
order to facilitate the estimation problem, we will not resort to shrink-
age, as in the graphical lasso. Rather, we assume that the conditional
independence structure between brain regions is given by an indepen-
dent estimate of structural connectivity.

Structural connectivity refers to the presence of white matter tracts
between spatially segregated brain regions (Hagmann et al., 2008). In
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humans, these tracts can be estimated in vivo by diffusion weighted
imaging (DWI) which measures the anisotropy in the diffusion of
water molecules (Le Bihan et al., 2001). The final result is usually a
binary undirected graph which reports whether or not two areas are
structurally connected. Clearly two brain regions can be directly func-
tionally coupled only if they are physically connected, therefore the
concepts of functional and structural connectivity are intimately related
(Damoiseaux and Greicius, 2009). The idea is to infer structural con-
nectivity from DWI data and use it as an additional constraint in our
Bayesianmodel. The validity of this approach is supported by several re-
cent experimental studies which found a substantial overlap between
structural and functional networks both inside specific cortical areas
(Koch et al., 2002) and on a whole brain scale (Cabral et al., 2012;
Damoiseaux and Greicius, 2009; Greicius et al., 2009; Hagmann et al.,
2008; Honey et al., 2007, 2009). Related approaches have been used be-
fore in the context of functional and effective connectivity analysis
(Deligianni et al., 2011; Ng et al., 2012; Stephan et al., 2009).

In the following we present a new Bayesian framework for estimat-
ing functional connectivity. The framework, whichwe refer to as Bayes-
ian functional connectivity (BFC) analysis, makes use of a G-Wishart
prior (Roverato, 2002). This prior allows the sparseness structure of es-
timated precision matrices to be determined by a graph G, correspond-
ing to structural connectivity. BFC analysis then amounts to computing a
posterior density over sparse precision matrices. This posterior may
then be used to compute marginal densities for partial correlations of
interest. Our approach is compared with existing approaches using
both simulated data and empirical data. We show that our approach
provides robust partial correlation estimates while at the same time
quantifying the uncertainty about functional connectivity.

Materials and methods

Conventional functional connectivity estimation

Traditionally, functional connectivity estimation has relied on esti-
mating covariance structure between p brain regions from time series
data X = (x1, …,xN). Each vector xn = (xn1, …,xnp) reflects neuronal
activity (e.g. BOLD responses) for p brain regions.Without loss of gener-
ality, we assume that data is standardized to have zero mean and unit
standard deviation such that covariance coincides with correlation. It
is assumed that the data are generated according to a zero-meanmulti-
variate Gaussian density

p Xð jΩÞ ¼ ∏
N

n
N xnð j0;ΩÞ∝jΩjN=2exp −1

2
SΩh i

� �
ð1Þ

with precision (inverse covariance) matrixΩ=Σ−1, scatter matrix S=
XXT and trace operator 〈 ⋅ 〉. The choice of this distribution is justified by
the fact that it is the maximum entropy distribution among all distribu-
tions with a specified mean and covariance (Cover and Thomas, 2006).
Alternatively, the likelihoodmay be characterized in terms of the scatter
matrix S which follows a Wishart distribution Wp Σ;Nð Þ if its density is

p SjΣ;Nð Þ ¼ jSjN=2
Z N;Σð Þ exp −1

2
SΣ−1

D E� �
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with Z(N,Σ) the normalizing constant. This perspective can be
applied more easily for distributions with a mean different from zero
(Anderson, 1984).

We focus on estimating the precision matrix Ω= Σ−1 rather than
the covariance matrix. As mentioned before, zero elements in Ω reflect
the absence of direct interactions. More formally, the sparseness
structure of Ω, represented in terms of an undirected graph G where
V(G) is a set of nodes and E(G) is a set of undirected edges between
nodes, is equivalent to the conditional independence structure of a
Gaussian Markov random field (Lauritzen, 1996; Whittaker, 2009). In

other words, in the context of connectivity analysis,ωij=0 corresponds
to the absence of structural connectivity between brain regions i and j.

In order to estimate the precisionmatrixΩ of a zero-meanmultivar-
iate Gaussian density from data X onemaymaximize the log likelihood

log p XjΩð Þ ¼ 1
2

N logjΩj− SΩh i½ �

which gives the maximum likelihood estimate (MLE):

Ω̂ ¼ arg max
Ω∈Mþ

N logjΩj− SΩh i½ � ¼ NS−1 ð3Þ

where themaximization is constrained to precisionmatrices in the fam-
ily of p×p positive definite matrices M+.

In practice, however, this empirical estimate does not contain zero
elements. Furthermore, in case Nb p, the maximum likelihood solution
does not exist since S/N becomes singular. Even in case N N p, the MLE
is often poorly behaved, and regularization is called for (Pourahmadi,
2011). The graphical lasso (Friedman et al., 2008) regularizes the pre-
ceding MLE through sparsification by solving

Ω̂ ¼ arg max
Ω∈Mþ

logjΩj− 1
N

SΩh i−λ Ωk k1
� �

: ð4Þ

The employed ‘1 regularizer encourages sparse precision matrices
as determined by the regularization parameter λ. This maximization
problem can be solved using established coordinate descent methods
(Friedman et al., 2008). The graphical lasso has been proposed as the
method of choice for functional connectivity estimation (Smith et al.,
2011; Varoquaux and Craddock, 2013; Varoquaux et al., 2010).

Even though the graphical lasso is commonly used to estimate
sparse precision matrices, it suffers from two issues. First, since the
graphical lasso employs shrinkage, pushing precision values towards
zero, the resulting functional connectivity estimate is biased. Second,
the graphical lasso produces a point estimate which does not directly
allow inferences to be drawn about the uncertainty in our estimates
arising from sampling noise and finite sample size.

Bayesian functional connectivity estimation

In order to tackle the aforementioned issues, we developed a Bayes-
ian framework for inferring functional connectivity which does not rely
on shrinkage but rather assumes that the sparseness structure G of Ω is
given (Dempster, 1972). Specifically, we assume that the graph G is
given by the structural connectivity as estimated from DWI data.

We start by assuming aG-Wishart distribution as the conjugate prior
on precisionmatricesΩ. TheG-Wishart is defined for the coneM+(G) of
positive-definite symmetricmatriceswith off-diagonal elementsωij=0
whenever (i,j) ∉ E(G). A zero-constrained random matrix Ω has the
G-Wishart distribution WG δ0;Dð Þ if its density is (Wang and Li, 2012):

p ΩjGð Þ ¼ Ωj j δ0−2ð Þ=2

ZG δ0;Dð Þ exp −1
2

DΩh i
� �

1 Ω∈Mþ Gð Þf g

where δ are the prior degrees of freedom, D a symmetric positive defi-
nite prior scatter matrix, and ZG(δ,D) the normalizing constant. The in-
dicator function 1x evaluates to 1 if its argument x is true and to 0 if
its argument is false. In our experiments, we set δ0 = 3 and choose
D= Ip × p (Moghaddam et al., 2009). This amounts to a vague prior for
the precision matrix in Eq. (1), except that its support is restricted by
G. We may now use Bayes' rule to obtain the posterior density forΩ ac-
cording to

p ΩjX;Gð Þ∝p XjΩð Þp ΩjGð Þ ¼ Ωj j δn−2ð Þ=2

ZG δn;Bð Þ exp −1
2

BΩh i
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1 Ω∈Mþ Gð Þf g: ð5Þ
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