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The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more
powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with
respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations,
and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who
needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions
and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via
brain–computer interfaces, it is most important to accurately extract the neural processes specific to a certain
mental state. These equally important but complementary objectives require different analysis methods. Deter-
mining the origin of neural processes in time or space from the parameters of a data-drivenmodel requires what
we call a forwardmodel of the data; such amodel explains how themeasured datawas generated from theneural
sources. Examples are general linearmodels (GLMs). Methods for the extraction of neural information from data
can be considered as backward models, as they attempt to reverse the data generating process. Examples are
multivariate classifiers. Herewedemonstrate that the parameters of forwardmodels are neurophysiologically in-
terpretable in the sense that significant nonzero weights are only observed at channels the activity of which is
related to the brain process under study. In contrast, the interpretation of backward model parameters can
lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since signifi-
cant nonzero weights may also be observed at channels the activity of which is statistically independent of the
brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward
models into forward models. This procedure enables the neurophysiological interpretation of the parameters
of linear backwardmodels. We hope that this work raises awareness for an often encountered problem and pro-
vides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Introduction

For many years, mass-univariate methods (e.g., Friston et al., 1994;
Luck, 2005; Pereda et al., 2005) have been themost widely used for an-
alyzing multivariate neuroimaging data. In such methods, every single

measurement channel (e.g., functional magnetic resonance imaging
(fMRI) voxel or electroencephalography (EEG) electrode) is individual-
ly related to a target variable, which represents, for example, behavioral
or stimulus parameters, which are considered as a model for neural
activation. In contrast, multivariate methods combine information
from different channels. This approach makes it possible to cancel out
noise and thereby to extract the brain signals of interest with higher
sensitivity and specificity (Bießmann et al., 2009; Blankertz et al.,
2002, 2008, 2011; Comon, 1994; Dähne et al., 2014; Dolce & Waldeier,
1974; Donchin & Heffley, 1978; Haufe et al., 2010; Hyvärinen et al.,
2001; Koles et al., 1995; Kragel et al., 2012; Kriegeskorte et al., 2006;
Lemm et al., 2011; Nikulin et al., 2011; Nolte et al., 2006; Parra et al.,
2003, 2008; von Bünau et al., 2009).
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The goals of neuroimaging analyses can be broadly categorized in
two classes as illustrated by the following typical application scenarios.

Interpretability for neuroscience and clinical use. Basic neuroscience
research is often concerned with determining the brain regions
(or measurement channels), frequencies, or time intervals reflecting a
certain cognitive process. Here we call analyses, for which this is possi-
ble, interpretable with respect to these processes. In extreme cases, in-
terpretable methods could even be used to answer questions like
“Where can a surgeon cut, without damaging a certain brain function?”

Accurate brain state estimation for BCIs. In other applications such as
brain–computer interfacing (BCI, Dornhege et al., 2007; Wolpaw &
Wolpaw, 2012), researchers are mainly interested in estimating
(or decoding) brain states from neuroimaging data, or vice versa. For
analysis methods in this scenario, the accuracy of decoding is more
important than the interpretability of the model parameters.

There is generally no reason to believe that the decoding models
used for BCIs should at the same time be interpretable. But this is exactly
what is sometimes implicitly assumed. For example, one may contrast
the brain activity in two experimental conditions using a multivariate
classifier. Although classifiers are designed for a different purpose
(estimation of brain states, that is), it is common to interpret their
parameterswith respect to properties of the brain.Awidespreadmiscon-
ception about multivariate classifier weight vectors is that (the brain
regions corresponding to) measurement channels with large weights are
strongly related to the experimental condition. In fact, such conclusions
can be unjustified. Classifier weights can exhibit small amplitudes for
measurement channels containing the signal-of-interest, but also large
amplitudes at channels not containing this signal. In an extreme scenar-
io, in which a surgeon bases a decision about which brain areas to cut
on, e.g., classifier weights, both Type I and Type II errors may thus
occur, with potentially severe consequences: the surgeon may cut
wrong brain areas and actually miss correct ones. The goal of this
paper is to raise awareness of this problem in the neuroimaging com-
munity and to provide practitioners with easy recipes for making their
models interpretable with respect to the neural processes under
study. Doing so, we build on prior work contained in Parra et al.
(2005), Hyvärinen et al. (2009), Blankertz et al. (2011), Naselaris et al.
(2011) and Bießmann et al. (2012b).

Whilewe here focus on linearmodels, nonlinear ones suffer from the
same interpretational difficulties. Besides their simplicity, linearmodels
are often preferred to nonlinear approaches in decoding studies, be-
cause they combine information from different channels in a weighted
sum, which resembles the working principle of neurons (Kriegeskorte,
2011). Moreover, they typically yield comparable estimation accuracy
in many applications (Misaki et al., 2010).

The article is structured as follows. We start in the Methods section
with three simple examples illustrating how coefficients of linear classi-
fiersmay severely deviate fromwhat would reflect the simulated “phys-
iological” truth. Next, we establish a distinction of the models used in
multivariate data analysis into forward and backward models. Roughly
speaking, forward models express the observed data as functions of
some underlying variables, which are of interest for the particular type
of analysis conducted (e.g., are maximally mutually independent, or
allow the best estimation with respect to certain brain states, etc.).
In contrast, backwardmodels express those variables of interest as func-
tions of the data. We point out that the interpretability of a model de-
pends on the direction of the functional relationship between
observations and underlying variables: the parameters of forward
models are interpretable, while those of backward models typically are
not. However, we provide a procedure for transforming backward
models into corresponding forward models, which works for the linear
case. By this means, interpretability can be achieved for methods
employing linear backward models such as linear classifiers.

In the Experiments and Experimental results sections we demon-
strate the benefit of the proposed transformation for a number of
established multivariate methods using synthetic data as well as real

EEG and fMRI recordings. In the Discussion section, we discuss theoret-
ical and practical issues related to our findings, as well as non-linear
generalizations and relations to the popular searchlight approach in
neuroimaging (Chen et al., 2011; Kriegeskorte et al., 2006). Conclusions
are drawn in the Conclusions section.

Methods

Our considerations apply in the same way to EEG, fMRI and any
other measurements. Moreover, it is not required that each dimension
of the data exactly corresponds to one physical sensor (fMRI voxel,
EEG electrode). For example, one may as well consider “spatial
features”, where every data channel corresponds to a different time
point or interval of the same physical measurement sensor (see
Example 3 in the Three classification examples section). Generally, the
data may be composed of any features derived from the original
measurements through linear or nonlinear processing, and may even
comprise higher-order interaction measures between physical sensors,
as in Shirer et al. (2012). We refer to all such features simply as data
channels.

In the following, the number of channels will be denoted by M and
the data of channel m (with m ∈ {1, …, M}) will be called xm. Further-
more, to obtain a concise notation, we combine all channels' data into
the vector x = [x1, …, xM]T ∈ ℝM. Finally, we will assume that N data
samples x(n) = 1, …, N are available, where in the neuroimaging con-
text the index n may often refer to time. In analogy, we will assume
the presence of K so-called latent factors in the data (see Forward
models and activation patterns and Backward models and extraction
filters sections), where the n-th sample of these factors is summarized
as s(n) = [s1(n), …, sK(n)]T ∈ ℝK. Finally, in supervised settings, each
latent factor sk(n) is linked to an externally given target variable yk(n).
These targets can either take continuous (e.g., stimulus intensities or re-
action times) or discrete (e.g., class labels indicating the experimental
condition) values. The n-th sample of target variables is denoted by
y(n) = [y1(n),…, yk(n)]T ∈ ℝK. Generally, we set scalar values in italic
face, while vector-valued quantities andmatrices are set in bold face. An
overview of the notation is given in Table 1. Denoting x(n) the
measured variable and target variables as y(n) we follow the standard
convention in the machine learning community. Although we are
aware of the convention in the fMRI literature to denote the design ma-
trix asX, we deliberately chose themachine learning nomenclature: the
problem of interpretatibility arises when using multivariate classifiers,
which are more associated with machine learning than with standard
fMRI methods.

Three classification examples

Example 1. Consider a binary classification setting inwhichwewant to
contrast the brain activity in two experimental conditions based on the

Table 1
Notation.

N Number of data points
M Number of measurement channels
K Number of latent factors or target variables
x(n) M-dimensional vector of observed data
s(n), ŝ nð Þ K-dimensional vector of latent factors
y(n) K-dimensional vector of target variables
�(n) M-dimensional noise vector in forward models
A M × K matrix of patterns in forward models
W M × K matrix of filters in backward models
Σx Data covariance
Σŝ Covariance of the latent factors
Σ�ϵ Noise covariance in forward models
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